[1] | Han T H, Helton J S, Chu S, Nocera D G, Rodriguez-Rivera J A, Broholm C, and Lee Y S 2012 Nature 492 406 | Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet
[2] | Sachdev S 1992 Phys. Rev. B 45 12377 | Kagome´- and triangular-lattice Heisenberg antiferromagnets: Ordering from quantum fluctuations and quantum-disordered ground states with unconfined bosonic spinons
[3] | Zhou Y, Kanoda K, and Ng T K 2017 Rev. Mod. Phys. 89 025003 | Quantum spin liquid states
[4] | Bilitewski T and Moessner R 2018 Phys. Rev. B 98 235109 | Disordered flat bands on the kagome lattice
[5] | Mazin I I, Jeschke H O, Lechermann F, Lee H, Fink M, Thomale R, and Valent R 2014 Nat. Commun. 5 4261 | Theoretical prediction of a strongly correlated Dirac metal
[6] | Wang W S, Li Z Z, Xiang Y Y, and Wang Q H 2013 Phys. Rev. B 87 115135 | Competing electronic orders on kagome lattices at van Hove filling
[7] | Ko W H, Lee P A, and Wen X G 2009 Phys. Rev. B 79 214502 | Doped kagome system as exotic superconductor
[8] | O'Brien A, Pollmann F, and Fulde P 2010 Phys. Rev. B 81 235115 | Strongly correlated fermions on a kagome lattice
[9] | Isakov S V, Wessel S, Melko R G, Sengupta K, and Kim Y B 2006 Phys. Rev. Lett. 97 147202 | Hard-Core Bosons on the Kagome Lattice: Valence-Bond Solids and Their Quantum Melting
[10] | Yan S M, Huse D A, and White S R 2011 Science 332 1173 | Spin-Liquid Ground State of the S = 1/2 Kagome Heisenberg Antiferromagnet
[11] | Kiesel M L, Platt C, and Thomale R 2013 Phys. Rev. Lett. 110 126405 | Unconventional Fermi Surface Instabilities in the Kagome Hubbard Model
[12] | Guo H M and Franz M 2009 Phys. Rev. B 80 113102 | Topological insulator on the kagome lattice
[13] | Rüegg A and Fiete G A 2011 Phys. Rev. B 83 165118 | Fractionally charged topological point defects on the kagome lattice
[14] | Yu S L and Li J X 2012 Phys. Rev. B 85 144402 | Chiral superconducting phase and chiral spin-density-wave phase in a Hubbard model on the kagome lattice
[15] | Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald I W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M, and Toberer E S 2019 Phys. Rev. Mater. 3 094407 | New kagome prototype materials: discovery of , and
[16] | Ortiz B R and Sarte P M 2020 arXiv:2012.09097 [cond-mat.supr-con] | Superconductivity in the $\mathbb{Z}_2$ kagome metal KV$_3$Sb$_5$
[17] | Yin Q W, Tu Z J, Gong C S, Fu Y, Yan S H, and Lei H C 2021 Chin. Phys. Lett. 38 037403 | Superconductivity and Normal-State Properties of Kagome Metal RbV 3 Sb 5 Single Crystals
[18] | Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J F, and Wilson S D 2020 Phys. Rev. Lett. 125 247002 | : A Topological Kagome Metal with a Superconducting Ground State
[19] | Zhao H, Li H, Ortiz B R, Teicher S M L, Park T, Ye M, Wang Z, Balents L, Wilson S D, and Zeljkovic I 2021 arXiv:2103.03118 [cond-mat.supr-con] | Cascade of correlated electron states in a kagome superconductor CsV3Sb5
[20] | Chen H, Yang H T, Hu B, Zhao Z, Yuan J, Xing Y Q, Qian G J, Huang Z H, Li G, Ye Y H, Yin Q W, Gong C S, Tu Z J, Lei H C, Ma S, Zhang H, Ni S L, Tan H X, Shen C M, Dong X L, Yan B H, Wang Z Q, and Gao H J 2021 arXiv:2103.09188 [cond-mat.supr-con] | Roton pair density wave and unconventional strong-coupling superconductivity in a topological kagome metal
[21] | Jiang Y X, Yin J X, Denner M M, Shumiya N, Ortiz B R, He J, Liu X, Zhang S S, Chang G, Belopolski I, Zhang Q, Hossain M S, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Guguchia Z, Xu G, Wang Z, Neupert T, Wilson S D, and Hasan M Z 2020 arXiv:2012.15709 [cond-mat.supr-con] | Discovery of topological charge order in kagome superconductor KV3Sb5
[22] | Li H X, Zhang T T, Pai Y Y, Marvinney C, Said A, Yilmaz T, Yin Q, Gong C, Tu Z, Vescovo E, Moore R G, Murakami S, Lei H C, Lee H N, Lawrie B, and Miao H 2021 arXiv:2103.09769 [cond-mat.supr-con] | Observation of Unconventional Charge Density Wave without Acoustic Phonon Anomaly in Kagome Superconductors AV3Sb5 (A=Rb,Cs)
[23] | Liang Z W, Hou X Y, Ma W R, Zhang F, Wu P, Zhang Z Y, Yu F H, Ying J J, Jiang K, Shan L, Wang Z Y, and Chen X H 2021 arXiv:2103.04760 [cond-mat.supr-con] | Three-dimensional charge density wave and robust zero-bias conductance peak inside the superconducting vortex core of a kagome superconductor CsV$_3$Sb$_5$
[24] | Yang S Y, Wang Y J, Ortiz B R et al. 2020 Sci. Adv. 6 eabb6003 | Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV 3 Sb 5
[25] | Yu F H, Wu T, Wang Z Y, Lei B, Zhuo W Z, Ying J J, and Chen X H 2021 arXiv:2102.10987 [cond-mat.supr-con] | Concurrence of anomalous Hall effect and charge density wave in a superconducting topological kagome metal
[26] | Kenney E M, Ortiz B R, Wang C, Wilson S D, and Graf M J 2021 J. Phys.: Condens. Matter (in press) | Absence of local moments in the kagome metal KV 3 Sb 5 as determined by muon spin spectroscopy
[27] | Zhao C C, Wang L S, Xia W, Yin Q W, Ni J M, Huang Y Y, Tu C P, Tao Z C, Tu Z J, Gong C S, Lei H C, Guo Y F, Yang X F, and Li S Y 2021 arXiv:2102.08356 [cond-mat.supr-con] | Nodal superconductivity and superconducting domes in the topological Kagome metal CsV3Sb5
[28] | Wang Y, Yang S, Sivakumar P K, Ortiz B R, Teicher S M L, Wu H, Srivastava A K, Garg C, Liu D, Parkin S S P, Toberer E S, McQueen T, Wilson S D, and Ali M N 2020 arXiv:2012.05898 [cond-mat.supr-con] | Proximity-induced spin-triplet superconductivity and edge supercurrent in the topological Kagome metal, $\mathrm{K_{1-x}V_3Sb_5}$
[29] | Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, and Chu C W 1987 Phys. Rev. Lett. 58 908 | Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure
[30] | Eggert J H, Hu J Z, Mao H K, Beauvais L, Meng R L, and Chu C W 1994 Phys. Rev. B 49 15299 | Compressibility of the ( n =1,2,3) high-temperature superconductors
[31] | Jia Y T, Gong C S, Liu Y X et al. 2020 Chin. Phys. Lett. 37 097404 | Mott Transition and Superconductivity in Quantum Spin Liquid Candidate NaYbSe 2
[32] | Takahashi H, Igawa K, Arii K, Kamihara Y, Hirano M, and Hosono H 2008 Nature 453 376 | Superconductivity at 43 K in an iron-based layered compound LaO1-xFxFeAs
[33] | Sun L L, Chen X J, Guo J, Gao P W, Huang Q Z, Wang H D, Fang M H, Chen X L, Chen G F, Wu Q, Zhang C, Gu D C, Dong X L, Wang L, Yang K, Li A G, Dai X, Mao H K, and Zhao Z X 2012 Nature 483 67 | Re-emerging superconductivity at 48 kelvin in iron chalcogenides
[34] | Liu Z Y, Dong Q X, Shan P F et al. 2020 Chin. Phys. Lett. 37 047102 | Pressure-Induced Metallization and Structural Phase Transition in the Quasi-One-Dimensional TlFeSe 2
[35] | Chen K Y, Wang N N, Yin Q W, Tu Z J, Gong C S, Sun J P, Lei H C, Uwatoko Y, and Cheng J G 2021 arXiv:2102.09328 [cond-mat.supr-con] | Double superconducting dome and triple enhancement of Tc in the kagome superconductor CsV3Sb5 under high pressure
[36] | Zhang Z Y, Chen Z, Zhou Y, Yuan Y F, Wang S Y, Zhang L L, Zhu X D, Zhou Y H, Chen X L, Zhou J H, and Yang Z R 2021 arXiv:2103.12507 [cond-mat.supr-con] | Pressure-induced Reemergence of Superconductivity in Topological Kagome Metal CsV3Sb5
[37] | Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 | Self-Consistent Equations Including Exchange and Correlation Effects
[38] | Lich H L 1989 Phys. Rev. Lett. 62 1201 | Two theorems on the Hubbard model
[39] | Vladimir I, Anisimov J Z, and Ole K 1991 Phys. Rev. B 44 943 | Band theory and Mott insulators: Hubbard U instead of Stoner I
[40] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 | Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
[41] | Kresse G, Furthmüller J, and Hafner J 1994 Phys. Rev. B 50 13181 | Theory of the crystal structures of selenium and tellurium: The effect of generalized-gradient corrections to the local-density approximation
[42] | Payne M C, Teter M P, Allan D C, Arias T, and Joannopoulos A J 1992 Rev. Mod. Phys. 64 1045 | Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients
[43] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | Generalized Gradient Approximation Made Simple
[44] | Parlinski K, Li Z Q, and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063 | First-Principles Determination of the Soft Mode in Cubic
[45] | Deringer V L, Tchougréeff A L, and Dronskowski R 2011 J. Phys. Chem. A 115 5461 | Crystal Orbital Hamilton Population (COHP) Analysis As Projected from Plane-Wave Basis Sets
[46] | Maintz S, Deringer V L, Tchougreeff A L, and Dronskowski R 2016 J. Comput. Chem. 7 1030 | LOBSTER: A tool to extract chemical bonding from plane-wave based DFT
[47] | Sun J P, Shahi P, Zhou H X, Huang Y L, Chen K Y, Wang B S, Ni S L, Li N N, Zhang K, Yang W G, Uwatoko Y, Xing G, Sun J, Singh D J, Jin K, Zhou F, Zhang G M, Dong X L, Zhao Z X, and Cheng J G 2018 Nat. Commun. 9 380 | Reemergence of high-Tc superconductivity in the (Li1-xFex)OHFe1-ySe under high pressure
[48] | Shahi P, Sun J P, Wang S H, Jiao Y Y, Chen K Y, Sun S S, Lei H C, Uwatoko Y, Wang B S, and Cheng J G 2018 Phys. Rev. B 97 020508(R) | High- superconductivity up to 55 K under high pressure in a heavily electron doped single crystal
[49] | Guo J, Chen X J, Dai J H, Zhang C, Guo J G, Chen X L, Wu Q, Gu D C, Gao P W, Yang L H, Yang K, Dai X, Mao H K, Sun L L, and Zhao Z X 2012 Phys. Rev. Lett. 108 197001 | Pressure-Driven Quantum Criticality in Iron-Selenide Superconductors
[50] | Huang C, Guo J, Zhao K, Cui F, Qin S S, Mu Q G, Zhou Y Z, Cai S, Yang C L, Long S J, Yang K, Li A G, Wu Q, Ren Z A, Hu J P, and Sun L L 2021 Phys. Rev. Mater. 5 L021801 | Reemergence of superconductivity in pressurized quasi-one-dimensional superconductor
[51] | Nakatsuji S, Kuga K, Machida Y, Tayama T, Sakakibara T, Karaki Y, Ishimoto H, Yonezawa S, Maeno Y, Pearson E, Lonzarich G G, Balicas L, Lee H, and Fisk Z 2008 Nat. Phys. 4 603 | Superconductivity and quantum criticality in the heavy-fermion system β-YbAlB4
[52] | Luo Y, Pourovskii L, Rowley S E, Li Y, Feng C, Georges A, Dai J, Cao G, Xu Z, Si Q, and Ong N P 2014 Nat. Mater. 13 777 | Heavy-fermion quantum criticality and destruction of the Kondo effect in a nickel oxypnictide
[53] | Amon A, Svanidze E, Cardoso-Gil R, Wilson M N, Rosner H, Bobnar M, Schnelle W, Lynn J W, Gumeniuk R, Hennig C, Luke G M, Borrmann H, Leithe-Jasper A, and Grin Y 2018 Phys. Rev. B 97 014501 | Noncentrosymmetric superconductor BeAu
[54] | Tan H, Liu Y Z, Wang Z Q, and Yan B H 2021 arXiv:2103.06325 [cond-mat.supr-con] | Charge density waves and electronic properties of superconducting kagome metals
[55] | Pei C Y, Xia Y Y Y, Wu J Z et al. 2020 Chin. Phys. Lett. 37 066401 | Pressure-Induced Topological and Structural Phase Transitions in an Antiferromagnetic Topological Insulator
[56] | Schoop L M, Xie L S, Chen R, Gibson Q D, Lapidus S H, Kimchi I, Hirschberger M, Haldolaarachchige N, Ali M N, Belvin C A, Liang T, Neaton J B, Ong N P, Vishwanath A, and Cava R J 2015 Phys. Rev. B 91 214517 | Dirac metal to topological metal transition at a structural phase change in and prediction of topology for the superconductor
[57] | Nayak J, Wu S C, Kumar N, Shekhar C, Singh S, Fink J, Rienks E E, Fecher G H, Parkin S S, Yan B H, and Felser C 2017 Nat. Commun. 8 13942 | Multiple Dirac cones at the surface of the topological metal LaBi