[1] | Guinea F, Katsnelson M I, and Geim A K 2010 Nat. Phys. 6 30 | Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering
[2] | Desai S B, Seol G, Kang J S, Fang H, Battaglia C, Kapadia R, Ager J W, Guo J, and Javey A 2014 Nano Lett. 14 4592 | Strain-Induced Indirect to Direct Bandgap Transition in Multilayer WSe 2
[3] | Yan W et al. 2013 Nat. Commun. 4 2159 | Strain and curvature induced evolution of electronic band structures in twisted graphene bilayer
[4] | Pereira V M and Neto A H C 2009 Phys. Rev. Lett. 103 046801 | Strain Engineering of Graphene’s Electronic Structure
[5] | Ju L et al. 2015 Nature 520 650 | Topological valley transport at bilayer graphene domain walls
[6] | Jiang L et al. 2016 Nat. Mater. 15 840 | Soliton-dependent plasmon reflection at bilayer graphene domain walls
[7] | Lin Y C, Dumcenco D O, Huang Y S, and Suenaga K 2014 Nat. Nanotechnol. 9 391 | Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2
[8] | Ahn G H et al. 2017 Nat. Commun. 8 608 | Strain-engineered growth of two-dimensional materials
[9] | Robinson I and Harder R 2009 Nat. Mater. 8 291 | Coherent X-ray diffraction imaging of strain at the nanoscale
[10] | Wang Y D, Tian H, Stoica A D, Wang X L, Liaw P K, and Richardson J W 2003 Nat. Mater. 2 101 | The development of grain-orientation-dependent residual stressess in a cyclically deformed alloy
[11] | Hÿtch M, Houdellier F, Hüe F, and Snoeck E 2008 Nature 453 1086 | Nanoscale holographic interferometry for strain measurements in electronic devices
[12] | Hu G et al. 2020 Nature 582 209 | Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers
[13] | Chen M, Lin X, Dinh T H, Zheng Z, Shen J, Ma Q, Chen H, Jarillo-Herrero P, and Dai S 2020 Nat. Mater. 19 1307 | Configurable phonon polaritons in twisted α-MoO3
[14] | Huber A J, Ziegler A, Köck T, and Hillenbrand R 2009 Nat. Nanotechnol. 4 153 | Infrared nanoscopy of strained semiconductors
[15] | Lyu B et al. 2019 Nano Lett. 19 1982 | Phonon Polariton-assisted Infrared Nanoimaging of Local Strain in Hexagonal Boron Nitride
[16] | Ni G X et al. 2019 Nat. Commun. 10 4360 | Soliton superlattices in twisted hexagonal boron nitride
[17] | Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, and Wang F 2009 Nature 459 820 | Direct observation of a widely tunable bandgap in bilayer graphene
[18] | Mak K F, Lui C H, Shan J, and Heinz T F 2009 Phys. Rev. Lett. 102 256405 | Observation of an Electric-Field-Induced Band Gap in Bilayer Graphene by Infrared Spectroscopy
[19] | Oostinga J B, Heersche H B, Liu X, Morpurgo A F, and Vandersypen L M K 2008 Nat. Mater. 7 151 | Gate-induced insulating state in bilayer graphene devices
[20] | Cao Y et al. 2018 Nature 556 80 | Correlated insulator behaviour at half-filling in magic-angle graphene superlattices
[21] | Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, and Jarillo-Herrero P 2018 Nature 556 43 | Unconventional superconductivity in magic-angle graphene superlattices
[22] | Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T, and Jarillo-Herrero P 2020 Nature 583 215 | Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene
[23] | Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F, and Dean C R 2019 Science 363 1059 | Tuning superconductivity in twisted bilayer graphene
[24] | Choi Y et al. 2019 Nat. Phys. 15 1174 | Electronic correlations in twisted bilayer graphene near the magic angle
[25] | Lu X et al. 2019 Nature 574 653 | Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene
[26] | Yan J, Zhang Y, Kim P, and Pinczuk A 2007 Phys. Rev. Lett. 98 166802 | Electric Field Effect Tuning of Electron-Phonon Coupling in Graphene
[27] | Kuzmenko A B, Benfatto L, Cappelluti E, Crassee I, van der Marel D, Blake P, Novoselov K S, and Geim A K 2009 Phys. Rev. Lett. 103 116804 | Gate Tunable Infrared Phonon Anomalies in Bilayer Graphene
[28] | Tang T T et al. 2010 Nat. Nanotechnol. 5 32 | A tunable phonon–exciton Fano system in bilayer graphene
[29] | Si C, Liu Z, Duan W, and Liu F 2013 Phys. Rev. Lett. 111 196802 | First-Principles Calculations on the Effect of Doping and Biaxial Tensile Strain on Electron-Phonon Coupling in Graphene
[30] | Sunku S S et al. 2018 Science 362 1153 | Photonic crystals for nano-light in moiré graphene superlattices
[31] | Fano U 1961 Phys. Rev. 124 1866 | Effects of Configuration Interaction on Intensities and Phase Shifts
[32] | Fan P, Yu Z, Fan S, and Brongersma M L 2014 Nat. Mater. 13 471 | Optical Fano resonance of an individual semiconductor nanostructure
[33] | Miroshnichenko A E, Flach S, and Kivshar Y S 2010 Rev. Mod. Phys. 82 2257 | Fano resonances in nanoscale structures
[34] | Limonov M, Rykov A, Tajima S, and Yamanaka A 1998 Phys. Rev. Lett. 80 825 | Raman Scattering Study on Fully Oxygenated Single Crystals: Anisotropy in the Superconductivity-Induced Effects
[35] | Chen H, Liu S, Zi J, and Lin Z 2015 ACS Nano 9 1926 | Fano Resonance-Induced Negative Optical Scattering Force on Plasmonic Nanoparticles
[36] | Hsu C W, Zhen B, Lee J, Chua S L, Johnson S G, Joannopoulos J D, and Soljačić M 2013 Nature 499 188 | Observation of trapped light within the radiation continuum
[37] | Sinev I S, Mukhin I S, Slobozhanyuk A P, Poddubny A N, Miroshnichenko A E, Samusev A K, and Kivshar Y S 2015 Nanoscale 7 11904 | Mapping plasmonic topological states at the nanoscale
[38] | Limonov M F, Rybin M V, Poddubny A N, and Kivshar Y S 2017 Nat. Photon. 11 543 | Fano resonances in photonics
[39] | Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864 | Inhomogeneous Electron Gas
[40] | Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 | Self-Consistent Equations Including Exchange and Correlation Effects
[41] | Blöchl P E 1994 Phys. Rev. B 50 17953 | Projector augmented-wave method
[42] | Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566 | Ground State of the Electron Gas by a Stochastic Method
[43] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
[44] | Togo A and Tanaka I 2015 Scr. Mater. 108 1 | First principles phonon calculations in materials science