[1] | Emma P, Akre R, Arthur J, Bionta R, Bostedt C, Bozek J, Brachmann A, Bucksbaum P, Coffee R, Decker F J, Ding Y, Dowell D, Edstrom S, Fisher A, Frisch J, Gilevich S, Hastings J, Hays G, Hering P, Huang Z, Iverson R, Loos H, Messerschmidt M, Miahnahri A, Moeller S, Nuhn H D, Pile G, Ratner D, Rzepiela J, Schultz D, Smith T, Stefan P, Tompkins H, Turner J, Welch J, White W, Wu J, Yocky G, and Galayda J 2010 Nat. Photon. 4 641 | First lasing and operation of an ångstrom-wavelength free-electron laser
[2] | Ullrich J, Rudenko A, and Moshammer R 2012 Annu. Rev. Phys. Chem. 63 635 | Free-Electron Lasers: New Avenues in Molecular Physics and Photochemistry
[3] | Harmand M, Coffee R, Bionta M R, Chollet M, French D, Zhu D, Fritz D M, Lemke H T, Medvedev N, Ziaja B, Toleikis S, and Cammarata M 2013 Nat. Photon. 7 215 | Achieving few-femtosecond time-sorting at hard X-ray free-electron lasers
[4] | Bostedt C, Boutet S, Fritz D M, Huang Z, Lee H J, Lemke H T, Robert A, Schlotter W F, Turner J J, and Williams G J 2016 Rev. Mod. Phys. 88 015007 | Linac Coherent Light Source: The first five years
[5] | Pellegrini C, Marinelli A, and Reiche S 2016 Rev. Mod. Phys. 88 015006 | The physics of x-ray free-electron lasers
[6] | Shi X, Wu Y, Wang J G, Kimberg V, and Zhang S B 2020 Phys. Rev. A 101 023401 | X-ray transient absorption spectroscopy by an ultrashort x-ray-laser pulse in a continuous-wave IR field
[7] | Rohringer N and Santra R 2012 Phys. Rev. A 86 043434 | Strongly driven resonant Auger effect treated by an open-quantum-system approach
[8] | Bian Q, Wu Y, Wang J G, and Zhang S B 2019 Phys. Rev. A 99 033404 | Bond-distance-dependent Auger decay of core-excited using an ultrashort x-ray pump and continuous-wave IR-control scheme
[9] | Berrah N, Bozek J, Costello J, Düsterer S, Fang L, Feldhaus J, Fukuzawa H, Hoener M, Jiang Y, Johnsson P, Kennedy E, Meyer M, Moshammer R, Radcliffe P, Richter M, Rouzée A, Rudenko A, Sorokin A, Tiedtke K, Ueda K, Ullrich J, and Vrakking M 2010 J. Mod. Opt. 57 1015 | Non-linear processes in the interaction of atoms and molecules with intense EUV and X-ray fields from SASE free electron lasers (FELs)
[10] | Seddon E A et al. 2017 Rep. Prog. Phys. 80 115901 | Short-wavelength free-electron laser sources and science: a review
[11] | Xiao F, Fan X, Wang L, Zhang D, Wu J, Wang X, and Zhao Z 2020 Chin. Phys. Lett. 37 114202 | Generation of Intense Sub-10 fs Pulses at 385nm
[12] | Wang X, Wang L, Xiao F, Zhang D, Lü Z, Yuan J, and Zhao Z 2020 Chin. Phys. Lett. 37 023201 | Generation of 88 as Isolated Attosecond Pulses with Double Optical Gating *
[13] | Rohringer N and Santra R 2008 Phys. Rev. A 77 053404 | Resonant Auger effect at high x-ray intensity
[14] | Liu J C, Sun Y P, Wang C K, Ågren H, and Gel'mukhanov F 2010 Phys. Rev. A 81 043412 | Auger effect in the presence of strong x-ray pulses
[15] | Cederbaum L S, Chiang Y C, Demekhin P V, and Moiseyev N 2011 Phys. Rev. Lett. 106 123001 | Resonant Auger Decay of Molecules in Intense X-Ray Laser Fields: Light-Induced Strong Nonadiabatic Effects
[16] | Ledingham K W D, McKenna P, and Singhal R P 2003 Science 300 1107 | Applications for Nuclear Phenomena Generated by Ultra-Intense Lasers
[17] | Došlić N 2006 Phys. Rev. A 74 013402 | Generalization of the Rabi population inversion dynamics in the sub-one-cycle pulse limit
[18] | Baykusheva D, Kraus P M, Zhang S B, Rohringer N, and Wörner H J 2014 Faraday Discuss. 171 113 | The sensitivities of high-harmonic generation and strong-field ionization to coupled electronic and nuclear dynamics
[19] | Demekhin P V, Chiang Y C, and Cederbaum L S 2011 Phys. Rev. A 84 033417 | Resonant Auger decay of the core-excited C O molecule in intense x-ray laser fields
[20] | Zhang S B and Rohringer N 2014 Phys. Rev. A 89 013407 | Photoemission spectroscopy with high-intensity short-wavelength lasers
[21] | Feng H, Zhang Y Z, and Jiang Y H 2016 Laser & Optoelectron. Prog. 53 010002 | Atomic and Molecular Experiments Progress in Free-Electron Laser Field
[22] | Yuan J, Ma Y, Li R, Ma H, Zhang Y, Ye D, Shen Z, Yan T, Wang X, Weidemüller M, and Jiang Y 2020 Chin. Phys. Lett. 37 053201 | Momentum Spectroscopy for Multiple Ionization of Cold Rubidium in the Elliptically Polarized Laser Field
[23] | Ott C, Aufleger L, Ding T, Rebholz M, Magunia A, Hartmann M, Stooß V, Wachs D, Birk P, Borisova G D, Meyer K, Rupprecht P, da C C C, Moshammer R, Attar A R, Gaumnitz T, Loh Z H, Düsterer S, Treusch R, Ullrich J, Jiang Y, Meyer M, Lambropoulos P, and Pfeifer T 2019 Phys. Rev. Lett. 123 163201 | Strong-Field Extreme-Ultraviolet Dressing of Atomic Double Excitation
[24] | Huang Y, Qin C C, Zhang Y Z, Wang X C, Yan T M, and Jiang Y H 2019 Chin. Phys. B 28 093202 | Trajectory analysis of few-cycle strong field ionization in two-color circularly polarized fields
[25] | Li F, Yang Y J, Chen J, Liu X J, Wei Z Y, and Wang B B 2020 Chin. Phys. Lett. 37 113201 | Universality of the Dynamic Characteristic Relationship of Electron Correlation in the Two-Photon Double Ionization Process of a Helium-Like System
[26] | Sun T, Zhang S W, Wang R, Feng S, Liu Y, Lv H, and Xu H F 2020 Chin. Phys. Lett. 37 043301 | Ionic Angular Distributions Induced by Strong-Field Ionization of Tri-Atomic Molecules
[27] | Liu Y R, Wu Y, Wang J G, Vendrell O, Kimberg V, and Zhang S B 2020 Phys. Rev. A 102 033114 | Electron-rotation coupling in diatomics under strong-field excitation
[28] | Liu Y R, Wu Y, Wang J G, Vendrell O, Kimberg V, and Zhang S B 2020 Phys. Rev. Res. 2 043348 | Photodissociation dynamics of the NH molecule under intense VUV pulses
[29] | Mosnier J P, Kennedy E T, van Kampen P, Cubaynes D, Guilbaud S, Sisourat N, Puglisi A, Carniato S, and Bizau J M 2016 Phys. Rev. A 93 061401 | Inner-shell photoexcitations as probes of the molecular ions , and : Measurements and theory
[30] | Kennedy E T, Mosnier J P, van Kampen P, Bizau J M, Cubaynes D, Guilbaud S, Carniato S, Puglisi A, and Sisourat N 2018 Phys. Rev. A 97 043410 | Evolution of -shell photoabsorption of the molecular-ion series ( ): Experimental and theoretical studies
[31] | Sun Z, Wang C, Zhao W, and Yang C 2018 J. Chem. Phys. 149 224307 | Geometric phase effects on photodissociation dynamics of diatomics
[32] | Badankó P, Halász G J, Cederbaum L S, Á V, and Csehi A 2018 J. Chem. Phys. 149 181101 | Communication: Substantial impact of the orientation of transition dipole moments on the dynamics of diatomics in laser fields
[33] | Tóth A, Badankó P, Halász G J, Vibók Á, and Csehi A 2018 Chem. Phys. 515 418 | Importance of the lowest-lying electronic state in the photodissociation dynamics of LiF
[34] | Tóth A, Csehi A, Halász G J, and Vibók A 2020 Phys. Rev. Res. 2 013338 | Control of photodissociation with the dynamic Stark effect induced by THz pulses
[35] | Shelkovnikov A, Butcher R J, Chardonnet C, and Amy-Klein A 2008 Phys. Rev. Lett. 100 150801 | Stability of the Proton-to-Electron Mass Ratio
[36] | Rosen G 1971 Phys. Rev. D 4 275 | Quantum Theory of Gravitation and the Mass of the Electron
[37] | Cohen E R 1952 Phys. Rev. 88 353 | The Rydberg Constant and the Atomic Mass of the Electron
[38] | Zhang S B, Kimberg V, and Rohringer N 2016 Phys. Rev. A 94 063413 | Nonlinear resonant Auger spectroscopy in CO using an x-ray pump-control scheme
[39] | Piancastelli M N, Neeb M, Kivimäki A, Kempgens B, Köppe H M, Maier K, Bradshaw A M, and Fink R F 1997 J. Phys. B 30 5677 | Vibrationally resolved decay spectra of CO at the C and O K-edges: experiment and theory
[40] | Beck M, Jackle A, Worth G, and Meyer H D 2000 Phys. Rep. 324 1 | The multiconfiguration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets
[41] | Agarwal G S 1971 Phys. Rev. A 4 1778 | Rotating-Wave Approximation and Spontaneous Emission
[42] | Zaheer K and Zubairy M S 1988 Phys. Rev. A 37 1628 | Atom-field interaction without the rotating-wave approximation: A path-integral approach
[43] | Brown A, Meath W J, and Tran P 2000 Phys. Rev. A 63 013403 | Rotating-wave approximation for the interaction of a pulsed laser with a two-level system possessing permanent dipole moments
[44] | Cederbaum L S and Domcke W 1981 J. Phys. B 14 4665 | Local against non-local complex potential in resonant electron-molecule scattering
[45] | Domcke W 1991 Phys. Rep. 208 97 | Theory of resonance and threshold effects in electron-molecule collisions: The projection-operator approach
[46] | Pahl E, Meyer H D, and Cederbaum L S 1996 Z. Phys. D 38 215 | Competition between excitation and electronic decay of short-lived molecular states
[47] | Demekhin P V and Cederbaum L S 2011 Phys. Rev. A 83 023422 | Strong interference effects in the resonant Auger decay of atoms induced by intense x-ray fields
[48] | Demekhin P V and Cederbaum L S 2013 J. Phys. B 46 164008 | Resonant Auger decay of core-excited CO molecules in intense x-ray laser pulses: the O(1s → π*) excitation
[49] | Skytt P, Glans P, Gunnelin K, Guo J H, Nordgren J, Luo Y, and Ågren H 1997 Phys. Rev. A 55 134 | Role of screening and angular distributions in resonant x-ray emission of CO
[50] | Biglari Z, Shayesteh A, and Maghari A 2014 Comput. Theor. Chem. 1047 22 | Ab initio potential energy curves and transition dipole moments for the low-lying states of CH+
[51] | Butler S E, Guberman S L, and Dalgarno A 1977 Phys. Rev. A 16 500 | Radiative charge transfer between H and , , and
[52] | Worth G A, Beck M H, Jäckle A, Vendrell O and Meyer H D, The MCTDH Package , Version 8.2, (2000); Meyer H D, Version 8.3 (2002), Version 8.4 (2007); Vendrell O and Meyer H D; Version 8.5 (2013); Version 8.5 contains the ML-MCTDH algorithm. Current versions: 8.4.18 and 8.5.11 (2019). Used version: exchange with “Used version” See http://mctdh.uni-hd.de/ |