[1] | Anderson P W 1973 Mater. Res. Bull. 8 153 | Resonating valence bonds: A new kind of insulator?
[2] | Kitaev A 2006 Ann. Phys. 321 2 | Anyons in an exactly solved model and beyond
[3] | Chen G and Balents L 2008 Phys. Rev. B 78 094403 | Spin-orbit effects in : A hyper-kagome lattice antiferromagnet
[4] | Jackeli G and Khaliullin G 2009 Phys. Rev. Lett. 102 017205 | Mott Insulators in the Strong Spin-Orbit Coupling Limit: From Heisenberg to a Quantum Compass and Kitaev Models
[5] | Kobayashi H, Tabuchi M, Shikano M, Kageyama H and Kanno R 2003 J. Mater. Chem. 13 957 | Structure, and magnetic and electrochemical properties of layered oxides, Li2IrO3
[6] | Singh Y and Gegenwart P 2010 Phys. Rev. B 82 064412 | Antiferromagnetic Mott insulating state in single crystals of the honeycomb lattice material
[7] | Abramchuk M, Ozsoy-Keskinbora C, Krizan J W, Metz K R, Bell D C and Tafti F 2017 J. Am. Chem. Soc. 139 15371 | Cu 2 IrO 3 : A New Magnetically Frustrated Honeycomb Iridate
[8] | Todorova V, Leineweber A, Kienle L, Duppel V and Jansen M 2011 J. Solid State Chem. 184 1112 | On AgRhO2, and the new quaternary delafossites AgLi1/3M2/3O2, syntheses and analyses of real structures
[9] | Roudebush J H, Ross K A and Cava R J 2016 Dalton Trans. 45 8783 | Iridium containing honeycomb Delafossites by topotactic cation exchange
[10] | Kitagawa K, Takayama T, Matsumoto Y, Kato A, Takano R, Kishimoto Y, Bette S, Dinnebier R, Jackeli G and Takagi H 2018 Nature 554 341 | A spin–orbital-entangled quantum liquid on a honeycomb lattice
[11] | Khuntia P, Manni S, Foronda F R, Lancaster T, Blundell S J, Gegenwart P and Baenitz M 2017 Phys. Rev. B 96 094432 | Local magnetism and spin dynamics of the frustrated honeycomb rhodate
[12] | Kobayashi Y, Okada T, Asai K, Katada M, Sano H and Ambe F 1992 Inorg. Chem. 31 4570 | Moessbauer spectroscopy and magnetization studies of .alpha.- and .beta.-ruthenium trichloride
[13] | Plumb K W, Clancy J P, Sandilands L J, Shankar V V, Hu Y F, Burch K S, Kee H Y and Kim Y J 2014 Phys. Rev. B 90 041112 | : A spin-orbit assisted Mott insulator on a honeycomb lattice
[14] | Sears J A, Songvilay M, Plumb K W, Clancy J P, Qiu Y, Zhao Y, Parshall D and Kim Y J 2015 Phys. Rev. B 91 144420 | Magnetic order in : A honeycomb-lattice quantum magnet with strong spin-orbit coupling
[15] | Majumder M, Schmidt M, Rosner H, Tsirlin A A, Yasuoka H and Baenitz M 2015 Phys. Rev. B 91 180401 | Anisotropic magnetism in the honeycomb system: Susceptibility, specific heat, and zero-field NMR
[16] | Cao H B, Banerjee A, Yan J Q, Bridges C A, Lumsden M D, Mandrus D G, Tennant D A, Chakoumakos B C and Nagler S E 2016 Phys. Rev. B 93 134423 | Low-temperature crystal and magnetic structure of
[17] | Janssen L, Andrade E C and Vojta M 2017 Phys. Rev. B 96 064430 | Magnetization processes of zigzag states on the honeycomb lattice: Identifying spin models for and
[18] | Banerjee A, Yan J, Knolle J, Bridges C A, Stone M B, Lumsden M D, Mandrus D G, Tennant D A, Moessner R and Nagler S E 2017 Science 356 1055 | Neutron scattering in the proximate quantum spin liquid α-RuCl 3
[19] | Kasahara Y, Ohnishi T, Mizukami Y, Tanaka O, Ma S, Sugii K, Kurita N, Tanaka H, Nasu J, Motome Y, Shibauchi T and Matsuda Y 2018 Nature 559 227 | Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid
[20] | Xing J, Feng E, Liu Y, Emmanouilidou E, Hu C, Liu J, Graf D, Ramirez A P, Chen G, Cao H and Ni N 2020 Phys. Rev. B 102 014427 | Néel-type antiferromagnetic order and magnetic field–temperature phase diagram in the spin- rare-earth honeycomb compound
[21] | Kataoka K, Hirai D, Yajima T, Nishio-Hamane D, Ishii R, Choi K Y, Wulferding D, Lemmens P, Kittaka S, Sakakibara T, Ishikawa H, Matsuo A, Kindo K and Hiroi Z 2020 Phys. Soc. Jpn. 89 114709 | Kitaev Spin Liquid Candidate Os x Cl 3 Comprised of Honeycomb Nano-Domains
[22] | Li F Y, Li Y D, Yu Y, Paramekanti A and Chen G 2017 Phys. Rev. B 95 085132 | Kitaev materials beyond iridates: Order by quantum disorder and Weyl magnons in rare-earth double perovskites
[23] | Morita K, Kishimoto M and Tohyama T 2018 Phys. Rev. B 98 134437 | Ground-state phase diagram of the Kitaev-Heisenberg model on a kagome lattice
[24] | Luo Z X and Chen G 2020 SciPost Phys. Core 3 004 | Honeycomb rare-earth magnets with anisotropic exchange interactions
[25] | Li Y, Liao H, Zhang Z, Li S, Jin F, Ling L, Zhang L, Zou Y, Pi L, Yang Z, Wang J, Wu Z and Zhang Q 2015 Sci. Rep. 5 16419 | Gapless quantum spin liquid ground state in the two-dimensional spin-1/2 triangular antiferromagnet YbMgGaO4
[26] | Li Y, Chen G, Tong W, Pi L, Liu J, Yang Z, Wang X and Zhang Q 2015 Phys. Rev. Lett. 115 167203 | Rare-Earth Triangular Lattice Spin Liquid: A Single-Crystal Study of
[27] | Liu W, Zhang Z, Ji J, Liu Y, Li J, Wang X, Lei H, Chen G and Zhang Q 2018 Chin. Phys. Lett. 35 117501 | Rare-Earth Chalcogenides: A Large Family of Triangular Lattice Spin Liquid Candidates
[28] | Brandt G and Diehl R 1974 Mater. Res. Bull. 9 411 | Preparation, powder data and crystal structure of YbOCl
[29] | Savigny N, Laruelle P and Flahaut J 1973 Acta Crystallogr. B 29 345 | Structure cristalline du sulfoiodure de samarium, SmSI
[30] | Beck H P and Strobel C 1986 Z. Anorg. Allg. Chem. 535 229 | Zur Hochdruckpolymorphie der Seltenerdsulfidiodide LnSI
[31] | Podberezskaya N V, Batsanova L R and Egorova L S 1966 J. Struct. Chem. 6 815 | Production of the oxyfluorides of holmium, erbium, and ytterbium and study of their crystal-chemical properties
[32] | Zhang Z, Ma X, Li J, Wang G, Adroja D T, Perring T P, Liu W, Jin F, Ji J, Wang Y, Kamiya Y, Wang X, Ma J and Zhang Q 2021 Phys. Rev. B 103 035144 | Crystalline electric field excitations in the quantum spin liquid candidate
[33] | Li Y, Adroja D, Bewley R I, Voneshen D, Tsirlin A A, Gegenwart P and Zhang Q 2017 Phys. Rev. Lett. 118 107202 | Crystalline Electric-Field Randomness in the Triangular Lattice Spin-Liquid
[34] | Sears J A, Chern L E, Kim S, Bereciartua P J, Francoual S, Kim Y B and Kim Y J 2020 Nat. Phys. 16 837 | Ferromagnetic Kitaev interaction and the origin of large magnetic anisotropy in α-RuCl3
[35] | Rau J G, Lee E K H and Kee H Y 2014 Phys. Rev. Lett. 112 077204 | Generic Spin Model for the Honeycomb Iridates beyond the Kitaev Limit
[36] | Gao Y H, Hickey C, Xiang T, Trebst S and Chen G 2019 Phys. Rev. Res. 1 013014 | Thermal Hall signatures of non-Kitaev spin liquids in honeycomb Kitaev materials