Bidirectional Information Flow Quantum State Tomography

Funds: Supported by the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2020A1515011204), and the National Natural Science Foundation of China (Grant No. 61602532).
  • Received Date: December 24, 2020
  • Published Date: March 31, 2021
  • The exact reconstruction of many-body quantum systems is one of the major challenges in modern physics, because it is impractical to overcome the exponential complexity problem brought by high-dimensional quantum many-body systems. Recently, machine learning techniques are well used to promote quantum information research and quantum state tomography has also been developed by neural network generative models. We propose a quantum state tomography method, which is based on a bidirectional gated recurrent unit neural network, to learn and reconstruct both easy quantum states and hard quantum states in this study. We are able to use fewer measurement samples in our method to reconstruct these quantum states and to obtain high fidelity.
  • Article Text

  • [1]
    Häffner H, Hänsel W, Roos C F, Benhelm J, Chek-al K D, Chwalla M, Körber T, Rapol U D, Riebe M, Schmidt P O, Becher C, Gühne O, Dür W and Blatt R 2005 Nature 438 643 doi: 10.1038/nature04279

    CrossRef Google Scholar

    [2]
    Gross D, Liu Y K, Flammia S T, Becker S and Eisert J 2010 Phys. Rev. Lett. 105 150401 doi: 10.1103/PhysRevLett.105.150401

    CrossRef Google Scholar

    [3]
    Yin Q, Xiang G Y, Li C F and Guo G C 2018 Chin. Phys. Lett. 35 070302 doi: 10.1088/0256-307X/35/7/070302

    CrossRef Google Scholar

    [4]
    Tóth G, Wieczorek W, Gross D, Krischek R, Schwemmer C and Weinfurter H 2010 Phys. Rev. Lett. 105 250403 doi: 10.1103/PhysRevLett.105.250403

    CrossRef Google Scholar

    [5]
    Moroder T, Hyllus P, Tóth G, Schwemmer C, Niggebaum A, Gaile S, Gühne O and Weinfurter H 2012 New J. Phys. 14 105001 doi: 10.1088/1367-2630/14/10/105001

    CrossRef Google Scholar

    [6]
    Baumgratz T, Gross D, Cramer M and Plenio M B 2013 Phys. Rev. Lett. 111 020401 doi: 10.1103/PhysRevLett.111.020401

    CrossRef Google Scholar

    [7]
    Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N and Lloyd S 2017 Nature 549 195 doi: 10.1038/nature23474

    CrossRef Google Scholar

    [8]
    Situ H, He Z, Wang Y, Li L and Zheng S 2020 Inf. Sci. 538 193 doi: 10.1016/j.ins.2020.05.127

    CrossRef Google Scholar

    [9]
    He Z, Li L, Zheng S, Li Y and Situ H 2021 New J. Phys. 23 033002 doi: 10.1088/1367-2630/abe0ae

    CrossRef Google Scholar

    [10]
    Carleo G and Troyer M 2017 Science 355 602 doi: 10.1126/science.aag2302

    CrossRef Google Scholar

    [11]
    Hartmann M J and Carleo G 2019 Phys. Rev. Lett. 122 250502 doi: 10.1103/PhysRevLett.122.250502

    CrossRef Google Scholar

    [12]
    Deng D L, Li X and Das S S 2017 Phys. Rev. X 7 021021 doi: 10.1103/PhysRevX.7.021021

    CrossRef Google Scholar

    [13]
    Cai Z and Liu J 2018 Phys. Rev. B 97 035116 doi: 10.1103/PhysRevB.97.035116

    CrossRef Google Scholar

    [14]
    Fournier R, Wang L, Yazyev O V and Wu Q 2020 Phys. Rev. Lett. 124 056401 doi: 10.1103/PhysRevLett.124.056401

    CrossRef Google Scholar

    [15]
    Yao T S, Tang C Y, Yang M, Zhu K J, Yan D Y, Yi C J, Feng Z L, Lei H C, Li C H, Wang L, Wang L, Shi Y G, Sun Y J and Ding H 2019 Chin. Phys. Lett. 36 068101 doi: 10.1088/0256-307X/36/6/068101

    CrossRef Google Scholar

    [16]
    Torlai G, Mazzola G, Carrasquilla J, Troyer M, Melko R and Carleo G 2018 Nat. Phys. 14 447 doi: 10.1038/s41567-018-0048-5

    CrossRef Google Scholar

    [17]
    Carrasquilla J, Torlai G, Melko R G and Aolita L 2019 Nat. Mach. Intell. 1 200 doi: 10.1038/s42256-019-0045-0

    CrossRef Google Scholar

    [18]
    Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser L and Polosukhin I 2017 arXiv:1706.03762v5 [cs.CL]

    Google Scholar

    [19]
    Cha P, Ginsparg P, Wu F, Carrasquilla J, McMahon P L and Kim E A 2020 arXiv:2006.12469v1 [quant-ph]

    Google Scholar

    [20]
    Ahmed S, Sanchez M C, Nori F and Frisk K A 2020 arXiv:2008.03240v1 [quant-ph]

    Google Scholar

    [21]
    Luchnikov I A, Ryzhov A, Stas P J, Filippov S N and Ouerdane H 2019 Entropy 21 1091 doi: 10.3390/e21111091

    CrossRef Google Scholar

    [22]
    Rocchetto A, Grant E, Strelchuk S, Carleo G and Severini S 2018 npj Quantum Inf. 4 28 doi: 10.1038/s41534-018-0077-z

    CrossRef Google Scholar

    [23]
    Sutskever I, Vinyals O and Le Q V 2014 Proceedings of the 27th International Conference on Neural Information Processing Systems NIPS'14 Cambridge, MA: MIT Press vol 2 p 3104

    Google Scholar

    [24]
    Wu Y, Schuster M, Chen Z, Le Q, Macherey W, Krikun M, Cao Y, Gao Q, Macherey K, Klingner J, Shah A, Johnson M, Liu X, Kaiser U, Gouws S, Kato Y, Kudo T, Kazawa H and Dean J 2016 arXiv:1609.08144v2 [cs.CL]

    Google Scholar

    [25]
    Chiu C, Sainath T N, Wu Y, Prabhavalkar R, Nguyen P, Chen Z, Kannan A, Weiss R J, Rao K, Gonina E, Jaitly N, Li B, Chorowski J and Bacchiani M 2018 IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP 15–20 April 2018, Calgary, AB, Canada p 4774 doi: 10.1109/ICASSP.2018.8462105

    CrossRef Google Scholar

    [26]
    Schuster M and Paliwal K K 1997 IEEE Trans. Signal Process. 45 2673 doi: 10.1109/78.650093

    CrossRef Google Scholar

    [27]
    Cho K, Van Merrienboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H and Bengio Y 2014 arXiv:1406.1078v3 [cs.CL]

    Google Scholar

    [28]
    Hochreiter S and Schmidhuber J 1997 Neural Comput. 9 1735 doi: 10.1162/neco.1997.9.8.1735

    CrossRef Google Scholar

    [29]
    Kingma D and Ba J 2014 arXiv:1412.6980v9 [cs.LG]

    Google Scholar

Catalog

    Article views (676) PDF downloads (683) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return