[1] | Berger C et al. 2006 Science 312 1191 | Electronic Confinement and Coherence in Patterned Epitaxial Graphene
[2] | Ni Z H, Wang Y Y, Yu T, You Y M and Shen Z X 2008 Phys. Rev. B 77 235403 | Reduction of Fermi velocity in folded graphene observed by resonance Raman spectroscopy
[3] | Yan Z, Peng Z W, Sun Z Z, Yao J, Zhu Y, Liu Z, Ajayan P M and Tour J M 2011 ACS Nano 5 8187 | Growth of Bilayer Graphene on Insulating Substrates
[4] | Xie L M, Wang H L, Jin C H, Wang X R, Jiao L Y, Suenaga K and Dai H J 2011 J. Am. Chem. Soc. 133 10394 | Graphene Nanoribbons from Unzipped Carbon Nanotubes: Atomic Structures, Raman Spectroscopy, and Electrical Properties
[5] | Zhao R Q, Zhang Y F, Gao T, Gao Y B, Liu N, Fu L and Liu Z F 2011 Nano Res. 4 712 | Scanning tunneling microscope observations of non-AB stacking of graphene on Ni films
[6] | Carr S, Massatt D, Fang S, Cazeaux P, Luskin M and Kaxiras E 2017 Phys. Rev. B 95 075420 | Twistronics: Manipulating the electronic properties of two-dimensional layered structures through their twist angle
[7] | Kang J, Li J, Li S S, Xia J B and Wang L W 2013 Nano Lett. 13 5485 | Electronic Structural Moiré Pattern Effects on MoS 2 /MoSe 2 2D Heterostructures
[8] | Li G H, Luican A, Santos J M B L D, Neto A H C, Reina A, Kong J and Andrei E Y 2010 Nat. Phys. 6 109 | Observation of Van Hove singularities in twisted graphene layers
[9] | Ugeda M M et al. 2014 Nat. Mater. 13 1091 | Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor
[10] | Bistritzer R and MacDonald A H 2011 Proc. Natl. Acad. Sci. USA 108 12233 | Moire bands in twisted double-layer graphene
[11] | Yankowitz M, Xue J M, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P and LeRoy B J 2012 Nat. Phys. 8 382 | Emergence of superlattice Dirac points in graphene on hexagonal boron nitride
[12] | Xue J M, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo-Herrero P and Leroy B J 2011 Nat. Mater. 10 282 | Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride
[13] | Luican A, Li G H, Reina A, Kong J, Nair R R, Novoselov K S, Geim A K and Andrei E Y 2011 Phys. Rev. Lett. 106 126802 | Single-Layer Behavior and Its Breakdown in Twisted Graphene Layers
[14] | TramblydeLaissardiere G, Mayou D and Magaud L 2012 Phys. Rev. B 86 125413 | Numerical studies of confined states in rotated bilayers of graphene
[15] | Cao Y et al. 2018 Nature 556 80 | Correlated insulator behaviour at half-filling in magic-angle graphene superlattices
[16] | Padhi B, Setty C and Phillips P W 2018 Nano Lett. 18 6175 | Doped Twisted Bilayer Graphene near Magic Angles: Proximity to Wigner Crystallization, Not Mott Insulation
[17] | Wolf T M R, Lado J L, Blatter G and Zilberberg O 2019 Phys. Rev. Lett. 123 096802 | Electrically Tunable Flat Bands and Magnetism in Twisted Bilayer Graphene
[18] | Kim K et al. 2017 Proc. Natl. Acad. Sci. USA 114 3364 | Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene
[19] | Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 | Unconventional superconductivity in magic-angle graphene superlattices
[20] | Woods C R et al. 2014 Nat. Phys. 10 451 | Commensurate–incommensurate transition in graphene on hexagonal boron nitride
[21] | Lebedev A V, Lebedeva I V, Popov A M and Knizhnik A A 2017 Phys. Rev. B 96 085432 | Stacking in incommensurate graphene/hexagonal-boron-nitride heterostructures based on ab initio study of interlayer interaction
[22] | Yao W et al. 2018 Proc. Natl. Acad. Sci. USA 115 6928 | Quasicrystalline 30° twisted bilayer graphene as an incommensurate superlattice with strong interlayer coupling
[23] | Lebedeva I V, Lebedev A V, Popov A M and Knizhnik A A 2016 Phys. Rev. B 93 235414 | Dislocations in stacking and commensurate-incommensurate phase transition in bilayer graphene and hexagonal boron nitride
[24] | Ahn S J et al. 2018 Science 361 782 | Dirac electrons in a dodecagonal graphene quasicrystal
[25] | Liu K H et al. 2014 Nat. Commun. 5 4966 | Evolution of interlayer coupling in twisted molybdenum disulfide bilayers
[26] | Lin M L et al. 2018 ACS Nano 12 8770 | Moiré Phonons in Twisted Bilayer MoS 2
[27] | Wu F C, Lovorn T and MacDonald A H 2017 Phys. Rev. Lett. 118 147401 | Topological Exciton Bands in Moiré Heterojunctions
[28] | Cao B X and Li T S 2015 J. Phys. Chem. C 119 1247 | Interlayer Electronic Coupling in Arbitrarily Stacked MoS 2 Bilayers Controlled by Interlayer S–S Interaction
[29] | Yu H Y, Liu G B, Tang J J, Xu X D and Yao W 2017 Sci. Adv. 3 e1701696 | Moiré excitons: From programmable quantum emitter arrays to spin-orbit–coupled artificial lattices
[30] | Wu F C, Lovorn T and MacDonald A H 2018 Phys. Rev. B 97 035306 | Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers
[31] | Naik M H and Jain M 2018 Phys. Rev. Lett. 121 266401 | Ultraflatbands and Shear Solitons in Moiré Patterns of Twisted Bilayer Transition Metal Dichalcogenides
[32] | Wang Y, Wang Z, Yao W, Liu G B and Yu H Y 2017 Phys. Rev. B 95 115429 | Interlayer coupling in commensurate and incommensurate bilayer structures of transition-metal dichalcogenides
[33] | Moon P and Koshino M 2013 Phys. Rev. B 87 205404 | Optical absorption in twisted bilayer graphene
[34] | Sivadas N, Okamoto S, Xu X D, Fennie C J and Xiao D 2018 Nano Lett. 18 7658 | Stacking-Dependent Magnetism in Bilayer CrI 3
[35] | Jiang P, Wang C, Chen D, Zhong Z, Yuan Z, Lu Z Y and Ji W 2018 arXiv:1806.09274 | Stacking tunable interlayer magnetism in bilayer CrI3
[36] | Huang B et al. 2018 Nat. Nanotechnol. 13 544 | Electrical control of 2D magnetism in bilayer CrI3
[37] | Schaibley J R, Yu H Y, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X D 2016 Nat. Rev. Mater. 1 16055 | Valleytronics in 2D materials
[38] | Tong W Y, Gong S J, Wan X G and Duan C G 2016 Nat. Commun. 7 13612 | Concepts of ferrovalley material and anomalous valley Hall effect
[39] | Shen X W, Tong W Y, Gong S J and Duan C G 2018 2D Mater. 5 011001 | Electrically tunable polarizer based on 2D orthorhombic ferrovalley materials
[40] | Esters M, Hennig R G and Johnson D C 2017 Phys. Rev. B 96 235147 | Dynamic instabilities in strongly correlated monolayers and bilayers
[41] | Tong W Y and Duan C G 2017 npj Quantum Mater. 2 47 | Electrical control of the anomalous valley Hall effect in antiferrovalley bilayers
[42] | Yao W, Xiao D and Niu Q 2008 Phys. Rev. B 77 235406 | Valley-dependent optoelectronics from inversion symmetry breaking
[43] | Xiao D, Liu G B, Feng W X, Xu X D and Yao W 2012 Phys. Rev. Lett. 108 196802 | Coupled Spin and Valley Physics in Monolayers of and Other Group-VI Dichalcogenides
[44] | Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809 | Valley-Contrasting Physics in Graphene: Magnetic Moment and Topological Transport
[45] | Xu X D, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343 | Spin and pseudospins in layered transition metal dichalcogenides
[46] | Jones A M, Yu H Y, Ross J S, Klement P, Ghimire N J, Yan J Q, Mandrus D G, Yao W and Xu X D 2014 Nat. Phys. 10 130 | Spin–layer locking effects in optical orientation of exciton spin in bilayer WSe2
[47] | Gong S J, Gong C, Sun Y Y, Tong W Y, Duan C G, Chu J H and Zhang X 2018 Proc. Natl. Acad. Sci. USA 115 8511 | Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors
[48] | King-Smith R D and Vanderbilt D 1993 Phys. Rev. B 47 1651 | Theory of polarization of crystalline solids
[49] | Duan C G, Velev J P, Sabirianov R F, Zhu Z Q, Chu J H, Jaswal S S and Tsymbal E Y 2008 Phys. Rev. Lett. 101 137201 | Surface Magnetoelectric Effect in Ferromagnetic Metal Films
[50] | Shen Y H, Song Y X, Tong W Y, Shen X W, Gong S J and Duan C G 2018 Adv. Theory Simul. 1 1800048 | Giant Flexomagnetoelectric Effect in Dilute Magnetic Monolayer
[51] | Zhang X W, Liu Q H, Luo J W, Freeman A J and Zunger A 2014 Nat. Phys. 10 387 | Hidden spin polarization in inversion-symmetric bulk crystals
[52] | Salahuddin S and Dattat S 2008 Nano Lett. 8 405 | Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices
[53] | Anderson P W 1972 Science 177 393 | More Is Different
[54] | Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15 | Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
[55] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | Generalized Gradient Approximation Made Simple
[56] | Grimme S 2006 J. Comput. Chem. 27 1787 | Semiempirical GGA-type density functional constructed with a long-range dispersion correction