Systems | Typical singe-qubit gate operating time | Coherence time $T_{\rm coh}$ | $Q_{\rm M}$ |
---|---|---|---|
Superconducting qubit | $1 $ ns | $\sim $85 µs | 8.5$\times$10$^4$ |
Phosphorous doped in silicon | $1$ µs | $0.56 $ s | 5$\times$10$^5$ |
NV center in diamond | $\sim $10 ns | $1.58 $ s | $\sim$$1.6$$\times$10$^8$ |
Trapped ion | 1–100 µs | $5500 $ s | $\sim$10$^7$ |
Molecular qubit (this work) | $10 $ ns | $1.4 $ ms | 1.4$\times$10$^5$ |
[1] | Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (New York: Cambridge University Press) p 546 |
[2] | Ladd T D et al. 2010 Nature 464 45 | Quantum computers
[3] | Nakamura Y, Pashkin Y A and Tsai J 1999 Nature 398 786 | Coherent control of macroscopic quantum states in a single-Cooper-pair box
[4] | Wineland D J 1998 J. Res. Natl. Inst. Stand. Technol. 103 259 | Experimental issues in coherent quantum-state manipulation of trapped atomic ions
[5] | Gruber A et al. 1997 Science 276 2012 | Scanning Confocal Optical Microscopy and Magnetic Resonance on Single Defect Centers
[6] | Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120 | Quantum computation with quantum dots
[7] | Leuenberger M N and Loss D 2001 Nature 410 789 | Quantum computing in molecular magnets
[8] | Gaita-Ariño A et al. 2016 Inorg. Chem. Front. 3 568 | Coherence and organisation in lanthanoid complexes: from single ion magnets to spin qubits
[9] | Ding Y S, Deng Y F and Zheng Y Z 2016 Magnetochemistry 2 40 | The Rise of Single-Ion Magnets as Spin Qubits
[10] | Nellutla S et al. 2007 Phys. Rev. Lett. 99 137601 | Coherent Manipulation of Electron Spins up to Ambient Temperatures in Doped
[11] | Atzori M et al. 2016 J. Am. Chem. Soc. 138 2154 | Room-Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Molecular Spin Qubits
[12] | Timco G A et al. 2009 Nat. Nanotechnol. 4 173 | Engineering the coupling between molecular spin qubits by coordination chemistry
[13] | Wedge C J et al. 2012 Phys. Rev. Lett. 108 107204 | Chemical Engineering of Molecular Qubits
[14] | Graham M J et al. 2014 J. Am. Chem. Soc. 136 7623 | Influence of Electronic Spin and Spin–Orbit Coupling on Decoherence in Mononuclear Transition Metal Complexes
[15] | Atzori M et al. 2016 J. Am. Chem. Soc. 138 11234 | Quantum Coherence Times Enhancement in Vanadium(IV)-based Potential Molecular Qubits: the Key Role of the Vanadyl Moiety
[16] | Yu C J et al. 2016 J. Am. Chem. Soc. 138 14678 | Long Coherence Times in Nuclear Spin-Free Vanadyl Qubits
[17] | Baldoví J J et al. 2013 Chem. Commun. 49 8922 | Coherent manipulation of spin qubits based on polyoxometalates: the case of the single ion magnet [GdW30P5O110]14−
[18] | Aguila D et al. 2014 J. Am. Chem. Soc. 136 14215 | Heterodimetallic [LnLn′] Lanthanide Complexes: Toward a Chemical Design of Two-Qubit Molecular Spin Quantum Gates
[19] | Pedersen K S et al. 2016 J. Am. Chem. Soc. 138 5801 | Toward Molecular 4f Single-Ion Magnet Qubits
[20] | Bertaina S et al. 2008 Nature 453 203 | Quantum oscillations in a molecular magnet
[21] | Yang J et al. 2012 Phys. Rev. Lett. 108 230501 | Observing Quantum Oscillation of Ground States in Single Molecular Magnet
[22] | Morton J J L et al. 2005 Phys. Rev. Lett. 95 200501 | High Fidelity Single Qubit Operations Using Pulsed Electron Paramagnetic Resonance
[23] | Jenkins M D et al. 2017 Phys. Rev. B 95 064423 | Coherent manipulation of three-qubit states in a molecular single-ion magnet
[24] | Godfrin C et al. 2017 Phys. Rev. Lett. 119 187702 | Operating Quantum States in Single Magnetic Molecules: Implementation of Grover’s Quantum Algorithm
[25] | Gaita-Ariño A et al. 2019 Nat. Chem. 11 301 | Molecular spins for quantum computation
[26] | Moreno-Pineda E et al. 2018 Chem. Soc. Rev. 47 501 | Molecular spin qudits for quantum algorithms
[27] | Barth J V 2007 Annu. Rev. Phys. Chem. 58 375 | Molecular Architectonic on Metal Surfaces
[28] | Vincent R et al. 2012 Nature 488 357 | Electronic read-out of a single nuclear spin using a molecular spin transistor
[29] | Thiele S et al. 2014 Science 344 1135 | Electrically driven nuclear spin resonance in single-molecule magnets
[30] | Fernandez A et al. 2016 Nat. Commun. 7 10240 | Making hybrid [n]-rotaxanes as supramolecular arrays of molecular electron spin qubits
[31] | Kaminski D et al. 2014 Phys. Rev. B 90 184419 | Quantum spin coherence in halogen-modified molecular nanomagnets
[32] | Ardavan A et al. 2007 Phys. Rev. Lett. 98 057201 | Will Spin-Relaxation Times in Molecular Magnets Permit Quantum Information Processing?
[33] | Bader K et al. 2014 Nat. Commun. 5 5304 | Room temperature quantum coherence in a potential molecular qubit
[34] | Zadrozny J M et al. 2015 ACS Cent. Sci. 1 488 | Millisecond Coherence Time in a Tunable Molecular Electronic Spin Qubit
[35] | Shiddiq M et al. 2016 Nature 531 348 | Enhancing coherence in molecular spin qubits via atomic clock transitions
[36] | Zadrozny J M et al. 2017 J. Am. Chem. Soc. 139 7089 | A Porous Array of Clock Qubits
[37] | Du J et al. 2009 Nature 461 1265 | Preserving electron spin coherence in solids by optimal dynamical decoupling
[38] | Rong X et al. 2011 Sci. Bull. 56 591 | Dynamical decoupling of electron spins in phosphorus-doped silicon
[39] | Medford J et al. 2012 Phys. Rev. Lett. 108 086802 | Scaling of Dynamical Decoupling for Spin Qubits
[40] | Bermudez A et al. 2012 Phys. Rev. A 85 040302 | Robust trapped-ion quantum logic gates by continuous dynamical decoupling
[41] | Bar-Gill N et al. 2012 Nat. Commun. 3 858 | Suppression of spin-bath dynamics for improved coherence of multi-spin-qubit systems
[42] | Wang X et al. 2012 Nat. Commun. 3 997 | Composite pulses for robust universal control of singlet–triplet qubits
[43] | Rong X et al. 2014 Phys. Rev. Lett. 112 050503 | Implementation of Dynamically Corrected Gates on a Single Electron Spin in Diamond
[44] | Shi Z et al. 2018 Rev. Sci. Instrum. 89 125104 | An X-band pulsed electron paramagnetic resonance spectrometer with time resolution improved by a field-programmable-gate-array based pulse generator
[45] | Feng P et al. 2012 Phys. Lett. A 376 2195 | Characterization of the electronic structure of defect in quartz by pulsed EPR spectroscopy
[46] | Vandersypen L M K, Chuang I L 2005 Rev. Mod. Phys. 76 1037 | NMR techniques for quantum control and computation
[47] | Shim J H et al. 2012 Europhys. Lett. 99 40004 | Robust dynamical decoupling for arbitrary quantum states of a single NV center in diamond
[48] | Zhao N et al. 2012 Nat. Nanotechnol. 7 657 | Sensing single remote nuclear spins
[49] | Mitrikas G and Prokopiou G 2015 J. Magn. Reson. 254 75 | Modulation depth enhancement of ESEEM experiments using pulse trains
[50] | Mitrikas G, Efthimiadou E K and Kordas G 2014 Phys. Chem. Chem. Phys. 16 2378 | Extending the electron spin coherence time of atomic hydrogen by dynamical decoupling
[51] | Reinhard F et al. 2012 Phys. Rev. Lett. 108 200402 | Tuning a Spin Bath through the Quantum-Classical Transition
[52] | Naydenov B et al. 2011 Phys. Rev. B 83 081201 | Dynamical decoupling of a single-electron spin at room temperature
[53] | Johnson B C and Goldburg W I 1966 Phys. Rev. 145 380 | Nuclear-Magnetic-Resonance Spin-Lattice Relaxation in High and Low Fields
[54] | Xiang Z L et al. 2013 Rev. Mod. Phys. 85 623 | Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems
[55] | Yan F et al. 2016 Nat. Commun. 7 12964 | The flux qubit revisited to enhance coherence and reproducibility
[56] | Muhonen J T et al. 2014 Nat. Nanotechnol. 9 986 | Storing quantum information for 30 seconds in a nanoelectronic device
[57] | Abobeih M H et al. 2018 Nat. Commun. 9 2552 | One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment
[58] | Harty T P et al. 2014 Phys. Rev. Lett. 113 220501 | High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit
[59] | Wang P et al. 2021 Nat. Commun. 12 233 | Single ion qubit with estimated coherence time exceeding one hour
[60] | DiVincenzo D P 2000 Fortschr. Phys. 48 771 | The Physical Implementation of Quantum Computation
[61] | Rong X et al. 2015 Nat. Commun. 6 8748 | Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions
[62] | Ferrando-Soria J et al. 2016 Nat. Commun. 7 11377 | A modular design of molecular qubits to implement universal quantum gates
[63] | De Lange G et al. 2010 Science 330 60 | Universal Dynamical Decoupling of a Single Solid-State Spin from a Spin Bath
[64] | Souza A M, Alvarez G A, Suter D 2011 Phys. Rev. Lett. 106 240501 | Robust Dynamical Decoupling for Quantum Computing and Quantum Memory
[65] | Czap G et al. 2019 Science 364 670 | Probing and imaging spin interactions with a magnetic single-molecule sensor
[66] | Verlhac B et al. 2019 Science 366 623 | Atomic-scale spin sensing with a single molecule at the apex of a scanning tunneling microscope