[1] | Bell L E 2008 Science 321 1457 | Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems
[2] | Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373 | Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals
[3] | Zhao L D, Tan G, Hao S, He J, Pei Y, Chi H, Wang H, Gong S, Xu H, Dravid V P, Uher C, Snyder G J, Wolverton C and Kanatzidis M G 2016 Science 351 141 | Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe
[4] | Wang F Q, Zhang S, Yu J and Wang Q 2015 Nanoscale 7 15962 | Thermoelectric properties of single-layered SnSe sheet
[5] | Bansal D, Hong J, Li C W, May A F, Porter W, Hu M Y, Abernathy D L and Delaire O 2016 Phys. Rev. B 94 054307 | Phonon anharmonicity and negative thermal expansion in SnSe
[6] | Mehboudi M, Fregoso B M, Yang Y, Zhu W, van der Zande A, Ferrer J, Bellaiche L, Kumar P and Barraza-Lopez S 2016 Phys. Rev. Lett. 117 246802 | Structural Phase Transition and Material Properties of Few-Layer Monochalcogenides
[7] | Skelton J M, Burton L A, Parker S C, Walsh A, Kim C E, Soon A, Buckeridge J, Sokol A A, Catlow C R A, Togo A et al. 2016 Phys. Rev. Lett. 117 075502 | Anharmonicity in the High-Temperature Phase of SnSe: Soft Modes and Three-Phonon Interactions
[8] | Zhang K, Deng K, Li J, Zhang H, Yao W, Denlinger J, Wu Y, Duan W and Zhou S 2018 Phys. Rev. Mater. 2 054603 | Widely tunable band gap in a multivalley semiconductor SnSe by potassium doping
[9] | Li L, Chen Z, Hu Y, Wang X, Zhang T, Chen W and Wang Q 2013 J. Am. Chem. Soc. 135 1213 | Single-Layer Single-Crystalline SnSe Nanosheets
[10] | Zhang C, Yin H, Han M, Dai Z, Pang H, Zheng Y, Lan Y Q, Bao J and Zhu J 2014 ACS Nano 8 3761 | Two-Dimensional Tin Selenide Nanostructures for Flexible All-Solid-State Supercapacitors
[11] | Zhao S, Wang H, Zhou Y, Liao L, Jiang Y, Yang X, Chen G, Lin M, Wang Y, Peng H et al. 2015 Nano Res. 8 288 | Controlled synthesis of single-crystal SnSe nanoplates
[12] | Chang C, Wu M, He D, Pei Y, Wu C F, Wu X, Yu H, Zhu F, Wang K, Chen Y, Huang L, Li J F, He J and Zhao L D 2018 Science 360 778 | 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals
[13] | Wang Z, Fan C, Shen Z, Hua C, Hu Q, Sheng F, Lu Y, Fang H, Qiu Z, Lu J et al. 2018 Nat. Commun. 9 47 | Defects controlled hole doping and multivalley transport in SnSe single crystals
[14] | Qin B, Wang D, He W, Zhang Y, Wu H, Pennycook S J and Zhao L D 2019 J. Am. Chem. Soc. 141 1141 | Realizing High Thermoelectric Performance in p-Type SnSe through Crystal Structure Modification
[15] | Burton M R, Mehraban S, Beynon D, McGettrick J, Watson T, Lavery N P and Carnie M J 2019 Adv. Energy Mater. 9 1900201 | 3D Printed SnSe Thermoelectric Generators with High Figure of Merit
[16] | Chen Z G, Shi X, Zhao L D and Zou J 2018 Prog. Mater. Sci. 97 283 | High-performance SnSe thermoelectric materials: Progress and future challenge
[17] | Wei P C, Bhattacharya S, He J, Neeleshwar S, Podila R, Chen Y and Rao A 2016 Nature 539 E1 | The intrinsic thermal conductivity of SnSe
[18] | Nishimura T, Sakai H, Mori H, Akiba K, Usui H, Ochi M, Kuroki K, Miyake A, Tokunaga M, Uwatoko Y, Katayama K, Murakawa H and Hanasaki N 2019 Phys. Rev. Lett. 122 226601 | Large Enhancement of Thermoelectric Efficiency Due to a Pressure-Induced Lifshitz Transition in SnSe
[19] | Xu X, Pereira L F, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Bui C T, Xie R, Thong J T et al. 2014 Nat. Commun. 5 3689 | Length-dependent thermal conductivity in suspended single-layer graphene
[20] | Gao Z, Dong X, Li N and Ren J 2017 Nano Lett. 17 772 | Novel Two-Dimensional Silicon Dioxide with in-Plane Negative Poisson’s Ratio
[21] | Shimizu S, Bahramy M S, Iizuka T, Ono S, Miwa K, Tokura Y and Iwasa Y 2016 Proc. Natl. Acad. Sci. USA 113 6438 | Enhanced thermopower in ZnO two-dimensional electron gas
[22] | Schmidt J, Marques M R G, Botti S and Marques M A L 2019 npj Comput. Mater. 5 83 | Recent advances and applications of machine learning in solid-state materials science
[23] | Gubernatis J E and Lookman T 2018 Phys. Rev. Mater. 2 120301 | Machine learning in materials design and discovery: Examples from the present and suggestions for the future
[24] | Long Y, Ren J and Chen H 2020 Phys. Rev. Lett. 124 185501 | Unsupervised Manifold Clustering of Topological Phononics
[25] | Long Y, Ren J, Li Y and Chen H 2019 Appl. Phys. Lett. 114 181105 | Inverse design of photonic topological state via machine learning
[26] | Hao S, Dravid V P, Kanatzidis M G and Wolverton C 2019 npj Comput. Mater. 5 58 | Computational strategies for design and discovery of nanostructured thermoelectrics
[27] | Iwasaki Y, Takeuchi I, Stanev V, Kusne A G, Ishida M, Kirihara A, Ihara K, Sawada R, Terashima K, Someya H, Uchida K I, Saitoh E and Yorozu S 2019 Sci. Rep. 9 2751 | Machine-learning guided discovery of a new thermoelectric material
[28] | Hu Z Y, Li K Y, Lu Y, Huang Y and Shao X H 2017 Nanoscale 9 16093 | High thermoelectric performances of monolayer SnSe allotropes
[29] | Ul H B, AlFaify S, Ahmed R, Butt F K, Laref A and Shkir M 2018 Phys. Rev. B 97 075438 | Exploring single-layered SnSe honeycomb polymorphs for optoelectronic and photovoltaic applications
[30] | Ul H B, AlFaify S and Laref A 2019 Phys. Chem. Chem. Phys. 21 4624 | Design and characterization of novel polymorphs of single-layered tin-sulfide for direction-dependent thermoelectric applications using first-principles approaches
[31] | Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704 | Crystal structure prediction using ab initio evolutionary techniques: Principles and applications
[32] | Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116 | Crystal structure prediction via particle-swarm optimization
[33] | Kappera R, Voiry D, Yalcin S E, Branch B, Gupta G, Mohite A D and Chhowalla M 2014 Nat. Mater. 13 1128 | Phase-engineered low-resistance contacts for ultrathin MoS2 transistors
[34] | Cho S, Kim S, Kim J H, Zhao J, Seok J, Keum D H, Baik J, Choe D H, Chang K J, Suenaga K, Kim S W, Lee Y H and Yang H 2015 Science 349 625 | Phase patterning for ohmic homojunction contact in MoTe2
[35] | Mostaghim S and Teich J 2003 Proceedings of the 2003 IEEE Swarm Intelligence Symposium SIS'03 (Cat. No.03EX706), Indianapolis, IN, USA, 2003, pp 26–33 | Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO)
[36] | Chen H Z, Zhang Y Y, Gong X and Xiang H 2014 J. Phys. Chem. C 118 2333 | Predicting New TiO 2 Phases with Low Band Gaps by a Multiobjective Global Optimization Approach
[37] | Yang J, Zhou J, Liu L and Li Y 2009 Comput. & Math. Appl. 57 1995 | A novel strategy of pareto-optimal solution searching in multi-objective particle swarm optimization (MOPSO)
[38] | Lalwani S, Singhal S, Kumar R and Gupta N 2013 Trans. Comb. 2 39 | A comprehensive survey: Applications of multi-objective particle swarm optimization (MOPSO) algorithm
[39] | Coello C A C, Pulido G T and Lechuga M S 2004 IEEE Trans. Evol. Comput. 8 256 | Handling multiple objectives with particle swarm optimization
[40] | Wang Y and Ren J 2020 Phys. Chem. Chem. Phys. 22 4481 | Computational discovery of two-dimensional HfO 2 zoo based on evolutionary structure search
[41] | Deb K, Pratap A, Agarwal S and Meyarivan T 2002 IEEE Trans. Evol. Comput. 6 182 | A fast and elitist multiobjective genetic algorithm: NSGA-II
[42] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | Generalized Gradient Approximation Made Simple
[43] | Blöchl P E 1994 Phys. Rev. B 50 17953 | Projector augmented-wave method
[44] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
[45] | Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106 | First-principles calculations of the ferroelastic transition between rutile-type and -type at high pressures
[46] | Madsen G K and Singh D J 2006 Comput. Phys. Commun. 175 67 | BoltzTraP. A code for calculating band-structure dependent quantities
[47] | Núñez-Valdez M, Allahyari Z, Fan T and Oganov A R 2018 Comput. Phys. Commun. 222 152 | Efficient technique for computational design of thermoelectric materials
[48] | Zhang Y Y, Gao W, Chen S, Xiang H and Gong X G 2015 Comput. Mater. Sci. 98 51 | Inverse design of materials by multi-objective differential evolution
[49] | Zhang L C, Qin G, Fang W Z, Cui H J, Zheng Q R, Yan Q B and Su G 2016 Sci. Rep. 6 19830 | Tinselenidene: a Two-dimensional Auxetic Material with Ultralow Lattice Thermal Conductivity and Ultrahigh Hole Mobility
[50] | Cahangirov S, Topsakal M, Aktürk E, Şahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804 | Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium
[51] | von Rohr F O, Ji H, Cevallos F A, Gao T, Ong N P and Cava R J 2017 J. Am. Chem. Soc. 139 2771 | High-Pressure Synthesis and Characterization of β-GeSe—A Six-Membered-Ring Semiconductor in an Uncommon Boat Conformation
[52] | Kamal C and Ezawa M 2015 Phys. Rev. B 91 085423 | Arsenene: Two-dimensional buckled and puckered honeycomb arsenic systems
[53] | Carrete J, Li W, Lindsay L, Broido D A, Gallego L J and Mingo N 2016 Mater. Res. Lett. 4 204 | Physically founded phonon dispersions of few-layer materials and the case of borophene
[54] | Liu D, Every A G and Tománek D 2016 Phys. Rev. B 94 165432 | Continuum approach for long-wavelength acoustic phonons in quasi-two-dimensional structures
[55] | Şahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger R T and Ciraci S 2009 Phys. Rev. B 80 155453 | Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations
[56] | Shafique A and Shin Y H 2017 Sci. Rep. 7 506 | Thermoelectric and phonon transport properties of two-dimensional IV–VI compounds
[57] | Dewandre A, Hellman O, Bhattacharya S, Romero A H, Madsen G K and Verstraete M J 2016 Phys. Rev. Lett. 117 276601 | Two-Step Phase Transition in SnSe and the Origins of its High Power Factor from First Principles
[58] | Pei Y, Shi X, LaLonde A, Wang H, Chen L and Snyder G J 2011 Nature 473 66 | Convergence of electronic bands for high performance bulk thermoelectrics
[59] | Liu W, Tan X, Yin K, Liu H, Tang X, Shi J, Zhang Q and Uher C 2012 Phys. Rev. Lett. 108 166601 | Convergence of Conduction Bands as a Means of Enhancing Thermoelectric Performance of -Type Solid Solutions
[60] | Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S and Snyder G J 2008 Science 321 554 | Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States
[61] | Wang H, Pei Y, LaLonde A D and Snyder G J 2012 Proc. Natl. Acad. Sci. USA 109 9705 | Weak electron-phonon coupling contributing to high thermoelectric performance in n-type PbSe
[62] | Ohta H, Kim S, Mune Y, Mizoguchi T, Nomura K, Ohta S, Nomura T, Nakanishi Y, Ikuhara Y, Hirano M et al. 2007 Nat. Mater. 6 129 | Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3
[63] | Kuroki K and Arita R 2007 J. Phys. Soc. Jpn. 76 083707 | “Pudding Mold” Band Drives Large Thermopower in Na x CoO 2
[64] | Mahan G and Sofo J 1996 Proc. Natl. Acad. Sci. USA 93 7436 | The best thermoelectric.
[65] | Pei Y, Wang H and Snyder G J 2012 Adv. Mater. 24 6125 | Band Engineering of Thermoelectric Materials
[66] | Ding G, Li J and Gao G 2015 RSC Adv. 5 91974 | Band structure engineering of multiple band degeneracy for enhanced thermoelectric power factors in MTe and MSe (M = Pb, Sn, Ge)
[67] | Yan J, Gorai P, Ortiz B, Miller S, Barnett S A, Mason T, Stevanović V and Toberer E S 2015 Energy & Environ. Sci. 8 983 | Material descriptors for predicting thermoelectric performance
[68] | Guan J, Zhu Z and Tománek D 2014 Phys. Rev. Lett. 113 046804 | Phase Coexistence and Metal-Insulator Transition in Few-Layer Phosphorene: A Computational Study
[69] | Li L, Kim J, Jin C, Ye G J, Qiu D Y, Felipe H, Shi Z, Chen L, Zhang Z, Yang F et al. 2017 Nat. Nanotechnol. 12 21 | Direct observation of the layer-dependent electronic structure in phosphorene
[70] | Han W H, Kim S, Lee I H and Chang K J 2017 J. Phys. Chem. Lett. 8 4627 | Prediction of Green Phosphorus with Tunable Direct Band Gap and High Mobility