Chinese Physics Letters, 2021, Vol. 38, No. 2, Article code 024202Express Letter Symmetry-Protected Scattering in Non-Hermitian Linear Systems L. Jin (金亮)* and Z. Song (宋智) Affiliations School of Physics, Nankai University, Tianjin 300071, China Received 1 December 2020; accepted 29 December 2020; published online 4 January 2021 Supported by the National Natural Science Foundation of China (Grant Nos. 11975128 and 11874225).
*Corresponding author. Email: jinliang@nankai.edu.cn
Citation Text: Jin L and Song Z 2021 Chin. Phys. Lett. 38 024202    Abstract Symmetry plays fundamental role in physics and the nature of symmetry changes in non-Hermitian physics. Here the symmetry-protected scattering in non-Hermitian linear systems is investigated by employing the discrete symmetries that classify the random matrices. The even-parity symmetries impose strict constraints on the scattering coefficients: the time-reversal ($C$ and $K$) symmetries protect the symmetric transmission or reflection; the pseudo-Hermiticity ($Q$ symmetry) or the inversion ($P$) symmetry protects the symmetric transmission and reflection. For the inversion-combined time-reversal symmetries, the symmetric features on the transmission and reflection interchange. The odd-parity symmetries including the particle-hole symmetry, chiral symmetry, and sublattice symmetry cannot ensure the scattering to be symmetric. These guiding principles are valid for both Hermitian and non-Hermitian linear systems. Our findings provide fundamental insights into symmetry and scattering ranging from condensed matter physics to quantum physics and optics. DOI:10.1088/0256-307X/38/2/024202 © 2021 Chinese Physics Society Article Text Quantum transport and light scattering depend on properties of media.[1,2] In optics, the Lorentz reciprocity is fundamental due to the symmetric permittivity tensor, which results in symmetric transmission when the input and output channels are interchanged.[2,3] Breaking reciprocity is important for the light flow molding and the nonreciprocity plays a crucial role in tailoring the light field. The optical isolator has a propagation direction dependent transmission.[4–9] The reciprocity breaks in the magneto-optical materials[10–14] and the asymmetric nonlinear optical structures.[15–19] In comparison, nonlinear systems are preferable for their integrability. However, in addition to the requirement of high intensity, the desirable light flow engineering is also comparably difficult. Alternatively, temporal modulation of the propagation constant in linear waveguides realizes magnetic-free nonreciprocity through synthesized magnetic flux,[20–31] being advantageous for scalable integrated devices in a wide range of optical, radio, and audible frequencies.[3] Recently, reciprocal and nonreciprocal anomalous scatterings are demonstrated in non-Hermitian systems.[32] The scattering dynamics closely relates to the symmetries of the scattering center. The reciprocity still holds in the parity-time-symmetric non-Hermitian metamaterials that judiciously incorporate gain and loss.[33–35] The inversion symmetry guarantees the symmetric transmission and reflection;[36–43] the time-reversal symmetry ensures the symmetric reflection;[44,45] and the parity-time symmetry protects the symmetric transmission.[45–95] Nevertheless, these conclusions are insufficient to fully capture the symmetric properties of scattering and the role played by the symmetry for an arbitrary linear system.[96] More important, the nature of symmetry changes in non-Hermitian physics.[97,98] Now, the fundamental principles for the symmetry-protected scattering remain concealed and are urgent to be settled as the rapid progresses in non-Hermitian physics.[99–106] In this Letter, we report the symmetry-protected scattering in non-Hermitian linear systems and reveal the fundamental roles played by the symmetries. We show that the internal symmetries $C$, $K$, $Q$, $P$ that classify the non-Hermitian random matrices protect the symmetric transmission and/or reflection.[107] The non-Hermiticity helps breaking the symmetry protection and enables various intriguing asymmetric scatterings in the linear photonic lattices, which has promising applications as optical diodes, isolators, and modulators. The scattering theory tackles problems including light propagation in dissipative metamaterial, on-chip functional photonic device design, and quantum transport manipulation in mesoscopic. Symmetries. The non-Hermitian scattering center $H_{\rm c}$ is classified under the discrete symmetries:[107,108] $$\begin{align} C~{\rm sym.}:&~~H_{\rm c}=\epsilon _{\rm c}cH_{\rm c}^{\rm T}c^{-1},~~cc^{\ast }=\pm \boldsymbol{1},~~ \tag {1} \end{align} $$ $$\begin{align} K~{\rm sym.}:&~~H_{\rm c}=\epsilon _{\Bbbk }\Bbbk H_{\rm c}^{\ast }\Bbbk ^{-1},~~\Bbbk \Bbbk ^{\ast }=\pm \boldsymbol{1},~~ \tag {2} \end{align} $$ $$\begin{align} Q~{\rm sym.}:&~~H_{\rm c}=\epsilon _{q}qH_{\rm c}^{† }q^{-1},~~q^{2}=\boldsymbol{1},~~ \tag {3} \end{align} $$ $$\begin{align} P~{\rm sym.}:&~~H_{\rm c}=\epsilon _{p}pH_{\rm c}p^{-1},~~p^{2}=\boldsymbol{1}.~~ \tag {4} \end{align} $$ $H_{\rm c}^{\rm T}$, $H_{\rm c}^{\ast}$, and $H_{\rm c}^†$ are the transpose, complex conjugation, and Hermitian conjugation of $H_{\rm c}$, respectively; $c$, $\Bbbk $, $q$, $p$ are unitary operators. The signs $\epsilon _{c,\Bbbk,q,p}=\pm 1$ denote the parity of symmetries $C$, $K$, $Q$, $P$. For non-Hermitian scattering center ($H_{\rm c}\neq H_{\rm c}^†$), both the $C$ and $K$ symmetries relate to the time-reversal symmetry $\epsilon _{c,\Bbbk }=+1$ and the particle-hole symmetry $\epsilon _{c,\Bbbk }=-1$.[98] The $Q$ symmetry is pseudo-Hermitian for $\epsilon _{q}=+1$ and pseudo-anti-Hermitian for $\epsilon _{q}=-1$ (also referred to as the chiral symmetry[98]). The $P$ symmetry with even-parity $\epsilon _{p}=+1$ will be the inversion symmetry if $p$ is the identity matrix rotated by $90^\circ$. The $P$ symmetry with the odd-parity $\epsilon _{p}=-1$ is the sublattice symmetry. The eight symmetries form an $E8$ Abelian group.[109] The even parity ($\epsilon _{c,\Bbbk,q,p}=+1$) symmetries, including time-reversal symmetry, pseudo-Hermiticity, and generalized inversion symmetry, can result in symmetric transmission and/or reflection; the constraints imposed by the symmetries $C,K$ are such that either the transmission or the reflection is symmetric; both the symmetries $P$, $Q$ can induce symmetric transmission and reflection. The symmetry-protected transmission or reflection was observed in many experiments.[37,54,55,64,71,110–112] In contrast, the odd-parity ($\epsilon _{c,\Bbbk,q,p}=-1$) symmetries, including particle-hole symmetry, chiral symmetry, and sublattice symmetry, cannot ensure the transmission or reflection to be symmetric because they cannot impose any symmetric constraint on the scattering coefficients. Scattering Formalism. We consider a general multi-port linear scattering center to elucidate the symmetry protection. In Fig. 1, the scattering center is a time-independent $N$-site network (shaded in orange). The schematic models of physical systems include the coupled resonators,[8,63,113,114] coupled waveguides,[37,51,55,71,115] and optical lattices.[62,110,116,117] The solid circles stand for the resonators, the waveguides, and the sites of the optical lattice. The solid lines represent the couplings. The leads are uniform lattice chains with the coupling strength $J$. For identical lead couplings, the scattering features are fully determined by the properties of the scattering center. The $j$th lead is connected to the scattering center site $j$ at the coupling strength $g_{j}$. The arrows illustrate the scattering for the individual incidence in the $m$th and $n$th leads, respectively. The outgoing waves in red (green) are the reflections (transmissions). For more than one inputs, the scattering wavefunction is a superposition of wavefunctions of separately injecting each individual input; thus, the scattering properties are fully captured by the scattering of the individual input. In the coupled mode theory,[118–120] the equation of motion for the monochromatic light field amplitude $\phi _{l,j}^{k}(s) =\psi _{l,j}^{k}(s) e^{-i\omega t}$ in the $j$th lead is $$ i\dot{\phi}_{l,j}^{k}(s)=\omega _{0}\phi _{l,j}^{k}(s)+J\phi _{l,j}^{k}(s-1)+J\phi _{l,j}^{k}(s+1),~~ \tag {5} $$ for the site $\vert s\vert \geq 1$.[63,121] The dispersion relation supported by the leads is $\omega =\omega _{0}+2J\cos k$ for the incident momentum $k$,[8,81] obtained from the steady-state solution of the light field amplitudes.[122,123] The resonant incidence has frequency $\omega _{0}$. The equations of motion for the light field in the scattering center are $$ i\left( \begin{array}{c} \dot{\phi}_{c,1}^{k} \\ \vdots \\ \dot{\phi}_{c,N}^{k}\end{array} \right) =\left( \omega _{0}\boldsymbol{1+}H_{\rm c}\right) \left( \begin{array}{c} \phi _{c,1}^{k} \\ \vdots \\ \phi _{c,N}^{k}\end{array} \right) +\left( \begin{array}{c} g_{1}\phi _{l,1}^{k}(1) \\ \vdots \\ g_{N}\phi _{l,N}^{k}(1)\end{array} \right),~~ \tag {6} $$ where the $N\times N$ matrix $H_{\rm c}$ characterizes the scattering center and $\boldsymbol{1}$ is the $N\times N$ identity matrix; $\phi _{c,j}^{k}$ is the light field amplitude of the scattering center site $j$; $\phi _{l,j}^{k}(1)$ is the light field amplitude of the connection site on the lead $j$; $g_{j}$ is chosen as $J$ or $0$ without loss of generality to indicate the presence or absence of the lead $j$. For other $g_{j}$, the connection sites are counted as part of the scattering center and the connection couplings remain $J$. Setting $\phi _{c,j}^{k}=\psi _{c,j}^{k}e^{-i\omega t}$, we have $d\psi _{c,j}^{k}/dt=0$ at the steady state; and the equations of motion reduce to $$ \omega \left( \begin{array}{c} \psi _{c,1}^{k} \\ \vdots \\ \psi _{c,N}^{k}\end{array} \right) =\left( \omega _{0}\boldsymbol{1+}H_{\rm c}\right) \left( \begin{array}{c} \psi _{c,1}^{k} \\ \vdots \\ \psi _{c,N}^{k}\end{array} \right) +\left( \begin{array}{c} g_{1}\psi _{l,1}^{k}(1) \\ \vdots \\ g_{N}\psi _{l,N}^{k}(1)\end{array} \right) .~~ \tag {7} $$
cpl-38-2-024202-fig1.png
Fig. 1. Schematic of a multi-port discrete scattering system. The orange area indicates an $N$-site scattering center $H_{\rm c}$. The connection coupling between the lead $j$ and the scattering center site $j$ is denoted as $g_j$ ($j\in [ 1,N]$). (a) Forward incidence in the lead-$m$. (b) Backward incidence in the lead-$n$.
In the multi-port scattering center, we consider the scattering properties of input and output in the leads $m$ and $n$. The steady-state equations of motion for the multi-port scattering system are equivalent to those for a two-port scattering system with leads $m$ and $n$. Each of the other lead $j$ ($j\neq m,n$) effectively reduces to an additional on-site self-energy term of the scattering center site $j$ in the equivalent scattering center $H_{\rm c}^{\prime}$.[123] Notably, the wavefunction in the additional lead $j$ ($j\neq m,n$) is outgoing wave $\psi _{l,j}^{k}(s) =t_{j}e^{iks}$, and the wavefunction continuity yields $\psi _{l,j}^{k}(0) =\psi _{c,j}^{k}$. Thus, we have the relation $g_{j}\psi _{l,j}^{k}(1) =g_{j}^{2}J^{-1}e^{ik}\psi _{l,j}^{k}(0) =g_{j}^{2}J^{-1}e^{ik}\psi _{c,j}^{k}$; consequently, the second term $g_{j}\psi _{l,j}^{k}(1) $ in Eq. (7) results in an extra self-energy $g_{j}^{2}J^{-1}e^{ik}$ for the scattering center site $j$ in the equations of motion,[124] and the multi-port scattering center is effectively characterized by the two-port scattering center $H_{\rm c}^{\prime }=H_{\rm c}+J^{-1}e^{ik}\mathrm{diag}(\cdots,g_{m-1}^{2},0,g_{m+1}^{2},\cdots,g_{n-1}^{2},0,g_{n+1}^{2},\cdots) $ with additional on-site complex self-energies except for the scattering center sites $m$ and $n$. Therefore, the scattering properties of the multi-port scattering center $H_{\rm c}$ are completely determined from analyzing the two-port scattering center $H_{\rm c}^{\prime}$, and we focus on investigating the scattering properties of the two-port scattering center. We take $g_{m}=g_{n}=J$ and $g_{j}=0$ ($j\neq m,n$). From Eq. (7), the wavefunctions for the scattering center sites $m$ and $n$ satisfy $$\begin{alignat}{1} \psi _{c,m}^{k} ={}&-\varDelta _{mm}^{-1}J\psi _{l,m}^{k}(-1)-\varDelta _{mn}^{-1}J\psi _{l,n}^{k}(1),~~ \tag {8} \end{alignat} $$ $$\begin{alignat}{1} \psi _{c,n}^{k} ={}&-\varDelta _{nm}^{-1}J\psi _{l,m}^{k}(-1)-\varDelta _{nn}^{-1}J\psi _{l,n}^{k}(1),~~ \tag {9} \end{alignat} $$ where $\varDelta _{mn}^{-1}$ is the element of the $m$th row and $n$th column of the inverse matrix of $\varDelta =H_{\rm c}-(2J\cos k) \boldsymbol{1}$.[125] For the multi-port case, just replace $H_{\rm c}$ with $H_{\rm c}^{\prime}$ in $\varDelta $. We index $-1$ to $-\infty $ for sites of the left lead (lead $m$) and index $1$ to $+\infty $ for sites of the right lead (lead $n$). The stationary states are the superpositions of incoming and outgoing waves.[59] The wavefunctions for the forward incidence $\psi _{\rm L}^{k}(s)$ and backward incidence $\psi _{\rm R}^{k}(s)$ are two linearly independent solutions $$\begin{align} \psi _{\rm L}^{k}(s) ={}&e^{iks}+r_{\rm L}e^{-iks},~(s < 0);~t_{\rm L}e^{iks},~(s >0),~~~~ \tag {10} \end{align} $$ $$\begin{align} \psi _{\rm R}^{k}(s) ={}&t_{\rm R}e^{-iks},~(s < 0);~e^{-iks}+r_{\rm R}e^{iks},~(s > 0).~~~~ \tag {11} \end{align} $$ The wavefunction continuity $\psi _{c,m}^{k}=\psi _{l,m}^{k}(0)$, $\psi _{c,n}^{k}=\psi _{l,n}^{k}(0)$ yields $\psi _{c,m}^{k}=1+r_{\rm L}$, $\psi _{c,n}^{k}=t_{\rm L}$ for the forward incidence. From Eq. (10), we have $\psi _{l,m}^{k}(-1)=e^{-ik}+r_{\rm L}e^{ik}$, $\psi _{l,n}^{k}(1)=t_{\rm L}e^{ik}$. Substituting these wavefunctions into Eqs. (8) and (9), we obtain $t_{\rm L}$ and $r_{\rm L}$. For the backward incidence, we have $\psi _{c,m}^{k}=t_{\rm R}$, $\psi _{c,n}^{k}=1+r_{\rm R}$. From Eq. (11), we have $\psi _{l,m}^{k}(-1)=t_{\rm R}e^{ik}$, $\psi _{l,n}^{k}(1)=e^{-ik}+r_{\rm R}e^{ik}$. Substituting these wavefunctions into Eqs. (8) and (9), we obtain $t_{\rm R}$ and $r_{\rm R}$. The scattering coefficients are $$\begin{align} &t_{\rm L}=\frac{\varDelta _{nm}^{-1}J^{-1}(e^{ik}-e^{-ik})}{(J^{-1}+\varDelta _{mm}^{-1}e^{ik})(J^{-1}+\varDelta _{nn}^{-1}e^{ik})-\varDelta _{mn}^{-1}\varDelta _{nm}^{-1}e^{2ik}}, \\ &r_{\rm L}=\frac{\varDelta _{mn}^{-1}\varDelta _{nm}^{-1}-(J^{-1}e^{ik}+\varDelta _{mm}^{-1})(J^{-1}e^{-ik}+\varDelta _{nn}^{-1})}{(J^{-1}+\varDelta _{mm}^{-1}e^{ik})(J^{-1}+\varDelta _{nn}^{-1}e^{ik})-\varDelta _{mn}^{-1}\varDelta _{nm}^{-1}e^{2ik}}, \\ &t_{\rm R}=\frac{\varDelta _{mn}^{-1}J^{-1}(e^{ik}-e^{-ik})}{(J^{-1}+\varDelta _{mm}^{-1}e^{ik})(J^{-1}+\varDelta _{nn}^{-1}e^{ik})-\varDelta _{mn}^{-1}\varDelta _{nm}^{-1}e^{2ik}}, \\ &r_{\rm R}=\frac{\varDelta _{mn}^{-1}\varDelta _{nm}^{-1}-(J^{-1}e^{ik}+\varDelta _{nn}^{-1})(J^{-1}e^{-ik}+\varDelta _{mm}^{-1})}{(J^{-1}+\varDelta _{mm}^{-1}e^{ik})(J^{-1}+\varDelta _{nn}^{-1}e^{ik})-\varDelta _{mn}^{-1}\varDelta _{nm}^{-1}e^{2ik}}.\\~~ \tag {12} \end{align} $$ The symmetric transmission is $$ t_{\rm L}=t_{\rm R}{\rm for }\varDelta _{mn}^{-1}=\varDelta _{nm}^{-1};~\left\vert t_{\rm L}\right\vert =\left\vert t_{\rm R}\right\vert {\rm for }|\varDelta _{mn}^{-1}|=|\varDelta _{nm}^{-1}|.~~ \tag {13} $$ The symmetric reflection is $$\begin{alignat}{1} r_{\rm L}={}&r_{\rm R}~{\rm for }~\varDelta _{mm}^{-1}=\varDelta _{nn}^{-1}; \\ \left\vert r_{\rm L}\right\vert ={}&\left\vert r_{\rm R}\right\vert ~{\rm for~real }~\varDelta _{mm}^{-1},\varDelta _{nn}^{-1},\varDelta _{mn}^{-1}\varDelta _{nm}^{-1}.~~ \tag {14} \end{alignat} $$ The scattering properties of each pair of input-output leads are straightforwardly obtained in this manner. The symmetries of the scattering center $H_{\rm c}$, imposing restrict constraints on the scattering coefficients, are essential to understand the symmetric scattering dynamics. Symmetry Protection. The symmetry-protected scattering properties are closely related to the spatial structure of the scattering center and rely on two ways of mapping, $$ \boldsymbol{1}:U_{\boldsymbol{1}}\left\vert m(n)\right\rangle _{\rm c}\rightarrow \left\vert m(n)\right\rangle _{\rm c};~\mathcal{I}:U_{\mathcal{I}}\left\vert m(n)\right\rangle _{\rm c}\rightarrow \left\vert n(m)\right\rangle _{\rm c},~~ \tag {15} $$ where $U_{\boldsymbol{1},\mathcal{I}}=c,\Bbbk,q,p$; $\left\vert m\right\rangle _{\rm c}$ and $\left\vert n\right\rangle _{\rm c}$ denote the two connection sites of the scattering center that are connected with the leads $m$ and $n$, respectively. The mapping manners reclassify eight even-parity symmetries $$ C_{\boldsymbol{1}},C_{\mathcal{I}};K_{\boldsymbol{1}},K_{\mathcal{I}};Q_{\boldsymbol{1}},Q_{\mathcal{I}};P_{\boldsymbol{1}},P_{\mathcal{I}}.~~ \tag {16} $$ The subscripts indicate the mapping manners. The $P_{\boldsymbol{1}}$ symmetry is trivial. The $P_{\mathcal{I}}$ symmetry is a generalized inversion symmetry and leads to symmetric transmission and reflection.[36–43] If the scattering center only has the $C_{\boldsymbol{1}}$ or $K_{\mathcal{I}}$ symmetry, the transmission will be symmetric; but the reflection will be asymmetric due to the lack of symmetry protection unless Eq. (14) is satisfied. Similarly, if the scattering center only has the $C_{\mathcal{I}}$ or $K_{\boldsymbol{1}}$ symmetry, the reflection will be symmetric, but the transmission will be asymmetric unless Eq. (13) is satisfied.
Table 1. Symmetry-protected constraint on the transmission and reflection for each individual symmetry.
Symmetry $C_{\boldsymbol{1}},K_{\mathcal{I}}$ $C_{\mathcal{I}},K_{\boldsymbol{1}}$ $Q_{\boldsymbol{1}},P_{\mathcal{I}}$ $Q_{\mathcal{I}},P_{\boldsymbol{1}}$
Constraint $\left\vert t_{\rm L}\right\vert =\left\vert t_{\rm R}\right\vert $ $\left\vert r_{\rm L}\right\vert =\left\vert r_{\rm R}\right\vert $ Both None
Table 1 lists the constraints for the corresponding symmetries (Section A in the Supplemental Material). For the scattering center without the $C_{\boldsymbol{1}},K_{\mathcal{I}},C_{\mathcal{I}},K_{\boldsymbol{1}},P_{\mathcal{I}},Q_{\boldsymbol{1}}$ symmetries, both the transmission and reflection are asymmetric unless Eq. (13) or (14) is satisfied. The symmetry protection is still valid even though the scattering coefficients diverge at the spectral singularity in the anomalous scattering,[32,126] where lasing occurs as the time-reversal process of perfect absorbing.[8,63] $H_{\rm c}=H_{\rm c}^{\rm T}$ belongs to the $C_{\boldsymbol{1}}$ symmetry and characterizes the Lorentz reciprocity in optics.[2,3,33,127] The scattering center $H_{\rm c}=[1,e^{-i\phi };e^{i\phi },i]$ has the $C_{\boldsymbol{1}}$ symmetry, where the unitary operator is $c=\mathrm{diag}(1,e^{2i\phi}$) and the mapping between the connection sites is $c[\left\vert m\right\rangle,\left\vert n\right\rangle ]^{\rm T}=[\left\vert m\right\rangle,e^{2i\phi }\left\vert n\right\rangle ]^{\rm T}$; consequently, $t_{\rm L}=e^{2i\phi }t_{\rm R}$. The $C_{\mathcal{I}}$ symmetry is the combined $P_{\mathcal{I}}C_{\boldsymbol{1}}$ symmetry and leads to the symmetric reflection $r_{\rm L}=r_{\rm R}$.[128,129] The $K$ symmetry has the complex conjugation operation and relates to the time-reversal symmetry.[98] The $K_{\boldsymbol{1}}$ symmetry results in the symmetric reflection $\left\vert r_{\rm L}\right\vert =\left\vert r_{\rm R}\right\vert $.[44,45] The $K_{\mathcal{I}}$ symmetry is the combined $P_{\mathcal{I}}K_{\boldsymbol{1}}$ symmetry and results in the symmetric transmission $\left\vert t_{\rm L}\right\vert =\left\vert t_{\rm R}\right\vert $; the parity-time symmetry belongs to the $K_{\mathcal{I}}$ symmetry.[45–95] The $Q_{\boldsymbol{1}}$ symmetry is a combined $C_{\boldsymbol{1}}K_{\boldsymbol{1}}$ or $C_{\mathcal{I}}K_{\mathcal{I}}$ symmetry. For example, $H_{\rm c}=[0,i-1;i+1,1]$ has the $Q_{\boldsymbol{1}}$ symmetry with $q=\sigma _{z}$; the Hermitian scattering centers possess the $Q_{\boldsymbol{1}}$ symmetry with $q$ being the identity matrix. The transmission and reflection are both symmetric under the $Q_{\boldsymbol{1}}$ symmetry protection.[130] In contrast, the combined $C_{\boldsymbol{1}}K_{\mathcal{I}}$ or $C_{\mathcal{I}}K_{\boldsymbol{1}}$ symmetry: the $Q_{\mathcal{I}}$ symmetry imposes no symmetric constraint on the scattering coefficients. For example, both the transmission and reflection are asymmetric for the $Q_{\mathcal{I}}$ symmetric non-Hermitian scattering center $H_{\rm c}=[i\gamma,Je^{-\varphi };Je^{\varphi },-i\gamma ]$, the corresponding unitary operator is $q=\sigma _{x}$; the cooperation between asymmetric coupling,[131–134] gain, and loss destroys the symmetric transmission and reflection. Breaking Reciprocity. Under the guidance of symmetry protection, we exemplify asymmetric light scattering in a three-coupled-resonator scattering center. In Fig. 2(a), the primary resonators (round-shape) are effectively coupled through the link resonators (stadium-shape). The Peierls phase factor $e^{\pm i\phi}$ presents in one of the couplings between the central three resonators,[135–137] where photons tunneling in the forward and backward directions experiences different path lengths as indicated by the orange and red arrows in the link resonator.[138,139] In the equations of motion [Eq. (6)], the scattering center is $$ H_{\rm c}=\left( \begin{array}{ccc} V_{1} & J & J \\ J & V_{2} & Je^{-i\phi } \\ J & Je^{i\phi } & V_{3}\end{array} \right),~~ \tag {17} $$ where $\omega _{0}+$Re$(V_{j})$ and Im$(V_{j})$ are the resonant frequency and gain/loss for the resonator $j=1,2,3$, respectively. We take $g_{1}=g_{3}=J$, $g_{2}=0$ and discuss the symmetry protection. Without the gain and loss, the $Q_{\boldsymbol{1}}$ symmetry ensures the symmetric transmission and reflection. Without the nonreciprocal coupling, the $C_{\boldsymbol{1}}$ symmetry ensures the symmetric transmission. The interplay between the gain/loss and nonreciprocal coupling generates the asymmetric transmission. $H_{\rm c}$ with complex $V_{1}=V_{3}^{\ast}$ and real $V_{2}\neq 0$ only has the $K_{\mathcal{I}}$ symmetry, $$ \Bbbk H_{\rm c}^{\ast }\Bbbk ^{-1}=\left( \begin{array}{ccc} V_{3}^{\ast } & J & J \\ J & V_{2}^{\ast } & Je^{-i\phi } \\ J & Je^{i\phi } & V_{1}^{\ast }\end{array} \right),~~ \tag {18} $$ $$\Bbbk =\left( \begin{array}{ccc} 0 & 0 & 1 \\ 0 & e^{-i\phi } & 0 \\ 1 & 0 & 0\end{array} \right) .~~ \tag {19} $$ Thus, the transmission is symmetric, but the reflection is asymmetric.[63] $H_{\rm c}$ with $V_{1}=V_{3}$ and $V_{2}\neq V_{2}^{\ast}$ only has the $C_{\mathcal{I}}$ symmetry,[140] $$ cH_{\rm c}^{\rm T}c^{-1}=\left( \begin{array}{ccc} V_{3} & J & J \\ J & V_{2} & Je^{-i\phi } \\ J & Je^{i\phi } & V_{1}\end{array} \right),~~ \tag {20} $$ $$c=\left( \begin{array}{ccc} 0 & 0 & 1 \\ 0 & e^{-i\phi } & 0 \\ 1 & 0 & 0\end{array} \right) .~~ \tag {21} $$ A single loss center $\left\{ V_{1},V_{2},V_{3}\right\} =\left\{ 0,-i\gamma,0\right\} $ has asymmetric transmission, but symmetric reflection; an ideal optical isolator with $S$-matrix $S=[r_{\rm L},t_{\rm R};t_{\rm L},r_{\rm R}]=(-i\sigma _{x}\pm \sigma _{y})/2$ is generated at $J=\gamma $ and $\phi =\mp \pi /2$ for resonant incidence $k=-\pi /2$ as indicated in Fig. 2(b). In contrast, $\left\vert V_{1}\right\vert \neq \left\vert V_{3}\right\vert $ breaks all the symmetries of $H_{\rm c}$, and both the transmission and reflection are asymmetric.
cpl-38-2-024202-fig2.png
Fig. 2. (a) Schematic of the three-coupled-resonator scattering center. (b) $|t_{\rm R}|/|t_{\rm L}|$ for both $\left\{i\gamma, -i\gamma,0 \right\}$ and $\left\{0, -i\gamma,0 \right\}$. Here $|t_{\rm R}|/|t_{\rm L}|$ diverges at $\phi=-\pi/2$, $\gamma/J=1$ and is cut to $5$. (c) $|r_{\rm R}|/|r_{\rm L}|$ for $\left\{i\gamma, -i\gamma,0 \right\}$. Here (b) and (c) are for $g_{1}=g_{3}=J$ and $g_2=0$ (Section B in the Supplemental Material). The incidence has resonant frequency $\omega_0$.
The striking asymmetric scattering for $\left\{ V_{1},V_{2},V_{3}\right\} =\left\{ i\gamma,-i\gamma,0\right\} $ in Figs. 2(b) and 2(c) indicates a chiral perfect absorption[92] that unidirectional incidence is completely absorbed for the clockwise mode.[73,140,141] A unidirectional transmissionless $t_{\rm L}=0$, $r_{\rm L}=1$; $t_{\rm R}=-2i$, $r_{\rm R}=0$ occurs at $\gamma =J$, $\phi =-\pi /2$ [Figs. 3(a) and 3(b)] and a unidirectional absorption $t_{\rm L}=-2i$, $r_{\rm L}=1$; $t_{\rm R}=0$, $r_{\rm R}=0$ occurs at $\gamma =J$, $\phi =\pi /2$ [Figs. 3(c) and 3(d)] for resonant incidence $k=-\pi /2$. For the three-port scattering, the transmission in the lead $3$ ($2$) for incidence in the lead $1$ is straightforwardly obtained from Eq. (12) by taking $m=1$, $n=3$($2$) and replacing $V_{2(3)}$ with $V_{2(3)}^{\prime }=V_{2(3)}+Je^{ik}$ in $H_{\rm c}$.[124] At $\left\{ V_{1},V_{2},V_{3}\right\} =\left\{ 0,0,0\right\} $, the input resonantly outgoes from one of the adjacent leads as indicated by the blue arrows at $\phi =\pi /2$ and inversely at $\phi =-\pi /2$ for the resonant incidence, and functions as a circulator[111,112,121] with symmetric zero reflection protected by the $C_{\mathcal{I}}$ symmetry because $V_{2}^{\prime }\neq (V_{2}^{\prime })^{\ast}$.
cpl-38-2-024202-fig3.png
Fig. 3. Asymmetric scattering dynamics for Figs. 2(b) and 2(c) at $\gamma =J$. (a) Forward and (b) backward incidences for $\phi =-\pi /2$. The counterclockwise (CCW) mode and the clockwise (CW) mode of the resonator experience opposite magnetic fluxes. (c) Forward and (d) backward incidences for $\phi =\pi /2$.
Without the gain and loss, the non-Hermitian dissipative coupling[113–115,142–145] associated with nonreciprocal coupling can also break the symmetry protection and generate asymmetric transmission and reflection in the three-coupled-resonator scattering center, $$ H_{\rm c}=\left( \begin{array}{ccc} 0 & -i\kappa & J \\ -i\kappa & 0 & Je^{-i\phi } \\ J & Je^{i\phi } & 0\end{array} \right) .~~ \tag {22} $$ More details are provided in Section C in the Supplemental Material. Discussion. For the two-port linear scattering center, the effective complex self-energy is absent. Thus, the non-Hermiticity is required to realize asymmetric transmission because Hermitian systems are $Q_{\boldsymbol{1}}$ symmetry protected. The $C_{\boldsymbol{1}},K_{\mathcal{I}},P_{\mathcal{I}},Q_{\boldsymbol{1}}$ symmetries should be absent to break symmetric transmission. In addition to the non-Hermiticity required to break the pseudo-Hermiticity ($Q_{\boldsymbol{1}}$ symmetry), the nonreciprocal coupling is required to break the $C_{\boldsymbol{1}}$ symmetry protection. The simplest example is a two-site center with asymmetric coupling strengths $H_{\rm c}=[0,Je^{-\varphi };Je^{\varphi },0]$;[128,129] the three-coupled-resonator scattering center with $\left\{ 0,-i\gamma,0\right\} $ is another example, and other examples include systems studied in Refs. [7,8,110,140,141,146–148]. The $C_{\mathcal{I}},K_{\boldsymbol{1}},P_{\mathcal{I}},Q_{\boldsymbol{1}}$ symmetries should be absent to break symmetric reflection. Provided that the resonator gain and/or loss are not balanced, all these four symmetries are absent. Thus, the asymmetric reflection ubiquitously presents in the intriguing scattering phenomena, including the unidirectional reflectionless,[54,55,64,68,149] unidirectional lasing,[8,63] coherent perfect absorber laser,[47,49,71,150] chiral absorber,[92] and chiral metamaterials.[151,152] The situation $\left\vert V_{1}\right\vert \neq \left\vert V_{3}\right\vert $ in the three-coupled-resonator (Fig. 3) and the systems studied in Refs. [8,153] exemplify the asymmetric transmission and reflection without the protection of all the six symmetries $C_{\boldsymbol{1}},C_{\mathcal{I}},K_{\boldsymbol{1}},K_{\mathcal{I}},P_{\mathcal{I}},Q_{\boldsymbol{1}}$. Properly incorporating nonreciprocal coupling, asymmetric coupling, dissipative coupling, gain, and loss generate asymmetric transmission and reflection. For the multi-port scattering center, the effective scattering center $H_{\rm c}^{\prime}$ may only possess the $C_{\boldsymbol{1}},C_{\mathcal{I}}$ or $P_{\mathcal{I}}$ symmetry due to the momentum dependent self-energy in $H_{\rm c}^{\prime}$. Thus, asymmetric scattering behavior easily occurs in the multi-port scattering center. If the leads are symmetrically coupled to the scattering center $H_{\rm c}$, the transmission and (or) reflection of the multi-port scattering center are still symmetric under the $P_{\mathcal{I}}$ ($C_{\boldsymbol{1}}$ or $C_{\mathcal{I}}$) symmetry protection. Notably, the scattering properties of $H_{\rm c}^{\prime}$ may be $K_{\boldsymbol{1}}$, $K_{\mathcal{I}}$ or $Q_{\boldsymbol{1}}$ symmetry-protected at certain momentums. The symmetries with opposite parities, various symmetry types, and different ways of mapping may coexist in the scattering center. The constraints imposed by the symmetries on the scattering coefficients coexist and affect simultaneously. The symmetry protection provides fundamental guiding principles for manipulating quantum transport in mesoscopic and tailoring the light flow in the integrated photonics. In summary, we unveil the roles played by the symmetry for the scattering in non-Hermitian linear systems. The time-reversal symmetry, pseudo-Hermiticity (including Hermiticity), and generalized inversion symmetry protect the symmetric transmission and/or reflection (Table 1), however, the particle-hole symmetry, chiral symmetry, and sublattice symmetry do not. These provide fundamental guiding principles for the light scattering in both Hermitian and non-Hermitian systems. Our findings are valid in the quantum systems and pave the way for further investigations on the transport in non-Hermitian physics. L. Jin acknowledges H. C. Wu for discussion and S. M. Zhang for useful comments on a first draft of this paper.
References Random-matrix theory of quantum transportReciprocity in opticsNon-reciprocal photonics based on time modulationComplete optical isolation created by indirect interband photonic transitionsAn All-Silicon Passive Optical DiodeParity–time symmetry and variable optical isolation in active–passive-coupled microresonatorsAsymmetric transmission through a flux-controlled non-Hermitian scattering centerIncident Direction Independent Wave Propagation and Unidirectional LasingControllable unidirectional transport and light trapping using a one-dimensional lattice with non-Hermitian couplingOn-chip optical isolation in monolithically integrated non-reciprocal optical resonatorsTaming the flow of light via active magneto-optical impuritiesOn-chip optical isolation based on nonreciprocal resonant delocalization effectsOn-chip non-reciprocal optical devices based on quantum inspired photonic latticesUnidirectional Lasing Emerging from Frozen Light in Nonreciprocal CavitiesAsymmetric Wave Propagation in Nonlinear SystemsObservation of Asymmetric Transport in Structures with Active NonlinearitiesLimitations of nonlinear optical isolators due to dynamic reciprocityNonreciprocal Photon BlockadeTime-Reversal Symmetry Bounds on the Electromagnetic Response of Asymmetric StructuresPhotonic Aharonov-Bohm Effect Based on Dynamic ModulationRealizing effective magnetic field for photons by controlling the phase of dynamic modulationPhotonic Floquet topological insulatorsNon-reciprocal phase shift induced by an effective magnetic flux for lightPhotonic Aharonov–Bohm effect in photon–phonon interactionsAharonov–Bohm photonic cages in waveguide and coupled resonator lattices by synthetic magnetic fieldsExperimental Observation of Aharonov-Bohm Cages in Photonic LatticesTopological bands for ultracold atomsTopological photonicsLight guiding by artificial gauge fieldsA square-root topological insulator with non-quantized indices realized with photonic Aharonov-Bohm cagesA single photonic cavity with two independent physical synthetic dimensionsAnomalies in light scatteringWhat is — and what is not — an optical isolatorComment on “Nonreciprocal Light Propagation in a Silicon Photonic Circuit”Unidirectional light propagation at exceptional pointsCoherent Perfect Absorbers: Time-Reversed LasersTime-Reversed Lasing and Interferometric Control of AbsorptionCoherent perfect absorbers: linear control of light with lightCoherent virtual absorption based on complex zero excitation for ideal light capturingCoherent virtual absorption for discretized lightCoherent virtual absorption of elastodynamic wavesCoherent virtual absorption of light in microring resonatorsNon-Hermitian scattering on a tight-binding latticeScattering in PT-symmetric quantum mechanicsReciprocal and unidirectional scattering of parity-time symmetric structuresComplex absorbing potentials PT -symmetric laser absorberInvisibility in $\mathcal {PT}$-symmetric complex crystals P T -Symmetry Breaking and Laser-Absorber Modes in Optical Scattering SystemsUnidirectional Invisibility Induced by P T -Symmetric Periodic StructuresNonreciprocal Light Propagation in a Silicon Photonic CircuitLight transport in random media with PT symmetryConservation relations and anisotropic transmission resonances in one-dimensional PT -symmetric photonic heterostructuresParity–time synthetic photonic latticesExperimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies P T Metamaterials via Complex-Coordinate Transformation OpticsFrom scattering theory to complex wave dynamics in non-Hermitian PT -symmetric resonatorsReciprocity and unitarity in scattering from a non-Hermitian complex PT-symmetric potentialBreaking of P T Symmetry in Bounded and Unbounded Scattering SystemsTunneling of obliquely incident waves through PT -symmetric epsilon-near-zero bilayersGeneralized unitarity and reciprocity relations for $\mathcal{P}\mathcal{T}$-symmetric scattering potentialsNon-Hermitian Degeneracies and Unidirectional Reflectionless Atomic LatticesUnidirectional Spectral SingularitiesAn invisible acoustic sensor based on parity-time symmetryParity-time symmetry from stacking purely dielectric and magnetic slabsUnidirectional reflectionless propagation in plasmonic waveguide-cavity systems at exceptional pointsScattering properties of PT-symmetric objectsMetawaveguide for Asymmetric Interferometric Light-Light SwitchingCoherent perfect absorption in one-sided reflectionless mediaOptical-reciprocity-induced symmetry in photonic heterostructures and its manifestation in scattering PT -symmetry breakingLasing and anti-lasing in a single cavityParity-Time Synthetic Phononic MediaUnidirectional Perfect AbsorberEffective PT-symmetric metasurfaces for subwavelength amplified sensingDynamical theory of scattering, exact unidirectional invisibility, and truncated ${\mathfrak{z}}\,{{\rm{e}}}^{-2{{\rm{i}}{k}}_{0}x}$ potentialUnidirectional zero reflection as gauged parity-time symmetryPerfect absorption and no reflection in disordered photonic crystalsContrasting eigenvalue and singular-value spectra for lasing and antilasing in a PT -symmetric periodic structureEmitter and absorber assembly for multiple self-dual operation and directional transparencyEffect of PT symmetry in a parallel double-quantum-dot structureAsymmetric lasing at spectral singularitiesElectromagnetic Impurity-Immunity Induced by Parity-Time SymmetryMultiple PT symmetry and tunable scattering behaviors in a heterojunction cavityParametric amplification and bidirectional invisibility in PT -symmetric time-Floquet systemsSynthetic exceptional points and unidirectional zero reflection in non-Hermitian acoustic systemsUnidirectional reflectionless phenomena in a non-Hermitian quantum system of quantum dots coupled to a plasmonic waveguideUnidirectional zero sonic reflection in passive PT -symmetric Willis mediaExtraordinary characteristics for one-dimensional parity-time-symmetric periodic ring optical waveguide networksThe Scattering Problem in PT ‐Symmetric Periodic Structures of 1D Two‐Material Waveguide Networks S -matrix pole symmetries for non-Hermitian scattering HamiltoniansConnection of temporal coupled-mode-theory formalisms for a resonant optical system and its time-reversal conjugatePerfectly Absorbing Exceptional Points and Chiral AbsorbersTheory of reflectionless scattering modesUnambiguous scattering matrix for non-Hermitian systemsThe influence of PT-symmetric degree on extraordinary optical properties of one-dimensional periodic optical waveguide networksLight fields in complex media: Mesoscopic scattering meets wave controlTopological unification of time-reversal and particle-hole symmetries in non-Hermitian physicsSymmetry and Topology in Non-Hermitian PhysicsNonlinear waves in PT -symmetric systemsNonlinear switching and solitons in PT-symmetric photonic systemsNon-Hermitian photonics based on parity–time symmetryParity-time symmetry meets photonics: A new twist in non-Hermitian opticsNon-Hermitian physics and PT symmetryExceptional points in optics and photonicsParity–time symmetry and exceptional points in photonicsParity‐Time Symmetry in Non‐Hermitian Complex Optical MediaA Classification of Non-Hermitian Random MatricesTunable Nonreciprocal Quantum Transport through a Dissipative Aharonov-Bohm Ring in Ultracold AtomsSound Isolation and Giant Linear Nonreciprocity in a Compact Acoustic CirculatorReconfigurable Josephson Circulator/Directional AmplifierAnti- PT symmetry in dissipatively coupled optical systemsUntying links through anti-parity-time-symmetric couplingOdd-Time Reversal P T Symmetry Induced by an Anti- P T -Symmetric MediumCoherent perfect absorption of nonlinear matter wavesNonreciprocal Localization of PhotonsCoupled-mode theoryTemporal coupled-mode theory for the Fano resonance in optical resonatorsMagnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loopsRigorous results for tight-binding networks: Particle trapping and scatteringPhysics counterpart of the P T non-Hermitian tight-binding chainA physical interpretation for the non-Hermitian HamiltonianWave emission and absorption at spectral singularitiesScattering properties of a parity-time-antisymmetric non-Hermitian systemMomentum-independent reflectionless transmission in the non-Hermitian time-reversal symmetric systemNon-Hermitian interferometer: Unidirectional amplification without distortionHermitian scattering behavior for a non-Hermitian scattering centerTopologically Protected Defect States in Open Photonic Systems with Non-Hermitian Charge-Conjugation and Parity-Time SymmetryNon-Hermitian transparency and one-way transport in low-dimensional lattices by an imaginary gauge fieldUnidirectional light emission in PT-symmetric microring lasersBulk-boundary correspondence in a non-Hermitian system in one dimension with chiral inversion symmetrySynthetic phonons enable nonreciprocal coupling to arbitrary resonator networksParity-time symmetry under magnetic fluxParity-time-symmetric coupled asymmetric dimersImaging topological edge states in silicon photonicsMeasuring Topological Invariants in Photonic SystemsUnidirectional perfect absorberNon-reciprocal transmission in photonic lattices based on unidirectional coherent perfect absorptionAnti-parity–time symmetry with flying atomsAnti–parity-time symmetry in diffusive systemsAnti-Parity-Time Symmetric Optical Four-Wave Mixing in Cold AtomsDissipative couplings in cavity magnonicsOne-way cloak based on nonreciprocal photonic crystalTunable Unidirectional Sound Propagation through a Sonic-Crystal-Based Acoustic DiodeAsymmetric optical mode conversion and transmission by breaking PT-symmetry on silicon photonic circuitsUnidirectional reflectionless light propagation at exceptional pointsAngular-Asymmetric Transmitting Metasurface and Splitter for Acoustic Waves: Combining the Coherent Perfect Absorber and a LaserChiral Metamaterials with P T Symmetry and BeyondScattering Properties of PT-Symmetric Chiral MetamaterialsOne-way light transport controlled by synthetic magnetic fluxes and ${\mathscr{P}}{\mathscr{T}}$-symmetric resonators
[1] Beenakker C W J 1997 Rev. Mod. Phys. 69 731
[2] Potton R J 2004 Rep. Prog. Phys. 67 717
[3] Sounas D L and Alù A 2017 Nat. Photon. 11 774
[4] Yu Z and Fan S 2009 Nat. Photon. 3 91
[5] Fan L, Wang J, Varghese L T, Shen H, Niu B, Xuan Y, Weiner A M and Qi M 2012 Science 335 447
[6] Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G and Xiao M 2014 Nat. Photon. 8 524
[7] Li X Q, Zhang X Z, Zhang G and Song Z 2015 Phys. Rev. A 91 032101
[8] Jin L and Song Z 2018 Phys. Rev. Lett. 121 073901
[9] Du L, Zhang Y and Wu J H 2020 Sci. Rep. 10 1113
[10] Bi L, Hu J, Jiang P, Kim D H, Dionne G F, Kimerling L C and Ross C A 2011 Nat. Photon. 5 758
[11] Ramezani H, Lin Z, Kalish S, Kottos T, Kovanis V and Vitebskiy I 2012 Opt. Express 20 26200
[12] El-Ganainy R, Kumar P and Levy M 2013 Opt. Lett. 38 61
[13] El-Ganainy R, Eisfeld A, Levy M and Christodoulides D N 2013 Appl. Phys. Lett. 103 161105
[14] Ramezani H, Kalish S, Vitebskiy I and Kottos T 2014 Phys. Rev. Lett. 112 043904
[15] Lepri S and Casati G 2011 Phys. Rev. Lett. 106 164101
[16] Bender N, Factor S, Bodyfelt J D, Ramezani H, Christodoulides D N, Ellis F M and Kottos T 2013 Phys. Rev. Lett. 110 234101
[17] Shi Y, Yu Z and Fan S 2015 Nat. Photon. 9 388
[18] Huang R, Miranowicz A, Liao J Q, Nori F and Jing H 2018 Phys. Rev. Lett. 121 153601
[19] Sounas D L and Alù A 2017 Phys. Rev. Lett. 118 154302
[20] Fang K, Yu Z and Fan S 2012 Phys. Rev. Lett. 108 153901
[21] Fang K, Yu Z and Fan S 2012 Nat. Photon. 6 782
[22] Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M and Szameit A 2013 Nature 496 196
[23] Tzuang L D, Feng K, Nussenzveig P, Fan S and Lipson M 2014 Nat. Photon. 8 701
[24] Li E, Eggleton B J, Fang K and Fan S 2014 Nat. Commun. 5 3225
[25] Longhi S 2014 Opt. Lett. 39 5892
[26] Mukherjee S, Di Liberto M, Öhberg P, Thomson R R and Goldman N 2018 Phys. Rev. Lett. 121 075502
[27] Cooper N R, Dalibard J and Spielman I B 2019 Rev. Mod. Phys. 91 015005
[28] Ozawa T, Price H M, Amo A, Goldman N, Hafezi M, Lu L, Rechtsman M, Schuster D, Simon J, Zilberberg O and Carusotto I 2019 Rev. Mod. Phys. 91 015006
[29] Lumer Y, Bandres M A, Heinrich M, Maczewsky L J, Herzig-Sheinfux H, Szameit A and Segev M 2019 Nat. Photon. 13 339
[30] Kremer M, Petrides I, Meyer E, Heinrich M, Zilberberg O and Szameit A 2020 Nat. Commun. 11 907
[31] Dutt A, Lin Q, Yuan L, Minkov M, Xiao M and Fan S 2020 Science 367 59
[32] Krasnok A, Baranov D, Li H N, Miri M A, Monticone F and Alù A 2019 Adv. Opt. Photon. 11 892
[33] Jalas D, Petrov A, Eich M, Freude W, Fan S, Yu Z, Baets R, Popović M, Melloni A, Joannopoulos J D, Vanwolleghem M, Doerr C R and Renner H 2013 Nat. Photon. 7 579
[34] Fan S, Baets R, Petrov A, Yu Z, Joannopoulos J D, Freude W, Melloni A, Popović M, Vanwolleghem M, Jalas D, Eich M, Krause M, Renner H, Brinkmeyer E and Doerr C R 2012 Science 335 38
[35] Yin X and Zhang X 2013 Nat. Mater. 12 175
[36] Chong Y D, Ge L, Cao H and Stone A D 2010 Phys. Rev. Lett. 105 053901
[37] Wan W, Chong Y, Ge L, Noh H, Stone A D and Cao H 2011 Science 331 889
[38] Baranov D G, Krasnok A, Shegai T, Alù A and Chong Y 2017 Nat. Rev. Mater. 2 17064
[39] Baranov D G, Krasnok A and Alù A 2017 Optica 4 1457
[40] Longhi S 2018 Opt. Lett. 43 2122
[41] Trainiti G, Ra'di Y, Ruzzene M and Alù A 2019 Sci. Adv. 5 eaaw3255
[42] Zhong Q, Simonson L, Kottos T and El-Ganainy R 2020 Phys. Rev. Res. 2 013362
[43] Burke P C, Wiersig J and Haque M 2020 Phys. Rev. A 102 012212
[44] Cannata F, Dedonder J P and Ventura A 2007 Ann. Phys. (N.Y.) 322 397
[45] Jin L, Zhang X Z, Zhang G and Song Z 2016 Sci. Rep. 6 20976
[46] Muga J G, Palao J P, Navarro B and Egusquiza I L 2004 Phys. Rep. 395 357
[47] Longhi S 2010 Phys. Rev. A 82 031801(R)
[48] Longhi S 2011 J. Phys. A 44 485302
[49] Chong Y D, Ge L and Stone A D 2011 Phys. Rev. Lett. 106 093902
[50] Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H and Christodoulides D N 2011 Phys. Rev. Lett. 106 213901
[51] Feng L, Ayache M, Huang J, Xu Y L, Lu M H, Chen Y F, Fainman Y and Scherer A 2011 Science 333 729
[52] Kalish S, Lin Z and Kottos T 2012 Phys. Rev. A 85 055802
[53] Ge L, Chong Y D and Stone A D 2012 Phys. Rev. A 85 023802
[54] Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N and Peschel U 2012 Nature 488 167
[55] Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E B, Almeida V R, Chen Y F and Scherer A 2013 Nat. Mater. 12 108
[56] Castaldi G, Savoia S, Galdi V, Alù A and Engheta N 2013 Phys. Rev. Lett. 110 173901
[57] Schomerus H 2013 Philos. Trans. R. Soc. A 371 20120194
[58] Ahmed Z 2013 Phys. Lett. A 377 957
[59] Ambichl P, Makris K G, Ge L, Chong Y, Stone A D and Rotter S 2013 Phys. Rev. X 3 041030
[60] Savoia S, Castaldi G and Galdi V 2014 Phys. Rev. B 89 085105
[61] Mostafazadeh A 2014 J. Phys. A 47 505303
[62] Wu J H, Artoni M and Rocca G C L 2014 Phys. Rev. Lett. 113 123004
[63] Ramezani H, Li H K, Wang Y and Zhang X 2014 Phys. Rev. Lett. 113 263905
[64] Fleury R, Sounas D and Alù A 2015 Nat. Commun. 6 5905
[65] Gear J, Liu F, Chu S T, Rotter S and Li J 2015 Phys. Rev. A 91 033825
[66] Huang Y, Veronis G and Min C 2015 Opt. Express 23 029882
[67] Miri M A, Eftekhar M A, Facao M, Abouraddy A F, Bakry A, Razvi M A N, Alshahrie A, Alù A and Christodoulides D N 2016 J. Opt. 18 075104
[68] Zhao H, Fegadolli W S, Yu J, Zhang Z, Ge L, Scherer A and Feng L 2016 Phys. Rev. Lett. 117 193901
[69] Wu J H, Artoni M and Rocca G C L 2016 Sci. Rep. 6 35356
[70] Ge L and Feng L 2016 Phys. Rev. A 94 043836
[71] Wong Z J, Xu Y, Kim J, Brien K O, Wang Y, Feng L and Zhang X 2016 Nat. Photon. 10 796
[72] Christensen J, Willatzen M, Velasco V R and Lu M H 2016 Phys. Rev. Lett. 116 207601
[73] Ramezani H, Wang Y, Yablonovitch E and Zhang X 2016 IEEE J. Sel. Top. Quantum Electron. 22 115
[74] Xiao S, Gear J, Rotter S and Li J 2016 New J. Phys. 18 085004
[75] Mostafazadeh A 2016 J. Phys. A 49 445302
[76] Gear J, Sun Y, Xiao S, Zhang L, Fitzgerald R, Rotter S, Chen H and Li J 2017 New J. Phys. 19 123041
[77] Wu J H, Artoni M and Rocca G C L 2017 Phys. Rev. A 95 053862
[78] Ge L and Feng L 2017 Phys. Rev. A 95 013813
[79] Kalozoumis P A, Morfonios C V, Kodaxis G, Diakonos F K and Schmelcher P 2017 Appl. Phys. Lett. 110 121106
[80] Zhang L L, Zhan G H, Li Z Z and Gong W J 2017 Phys. Rev. A 96 062133
[81] Jin L 2018 Phys. Rev. A 97 033840
[82] Luo J, Li J and Lai Y 2018 Phys. Rev. X 8 031035
[83] Gao F, Dong J R, Liu Y M 2018 Y. Zhang J. Opt. Soc. Am. B 35 2075
[84] Koutserimpas T T, Alù A and Fleury R 2018 Phys. Rev. A 97 013839
[85] Shen C, Li J, Peng X and Cummer S A 2018 Phys. Rev. Mater. 2 125203
[86] Wu N, Zhang C, Jin X R, Zhang Y Q and Lee Y P 2018 Opt. Express 26 3839
[87] Merkel A, Romero-García V, Groby J P, Li J and Christensen J 2018 Phys. Rev. B 98 201102(R)
[88] Zhi Y, Yang X, Wu J, Du S, Cao P, Deng D and Liu C T 2018 Photon. Res. 6 579
[89] Wu H, Yang X, Tang Y, Tang X, Deng D, Liu H and Wei Z 2019 Ann. Phys. (Berlin) 531 1900120
[90] Simón M A, Buendía A, Kiely A, Mostafazadeh A and Muga J G 2019 Phys. Rev. A 99 052110
[91] Zhao Z, Guo C and Fan S 2019 Phys. Rev. A 99 033839
[92] Sweeney W R, Hsu C W, Rotter S and Stone A D 2019 Phys. Rev. Lett. 122 093901
[93] Sweeney W R, Hsu C W and Stone A D 2020 Phys. Rev. A 102 063511
[94] Novitsky A, Lyakhov D, Michels D, Pavlov A A, Shalin A S and Novitsky D V 2020 Phys. Rev. A 101 043834
[95] Zhu H, Yang X, Lin Z, Liu X, Yang X 2020 Opt. Commun. 459 124945
[96] Rotter S and Gigan S 2017 Rev. Mod. Phys. 89 015005
[97] Kawabata K, Higashikawa S, Gong Z, Ashida Y and Ueda M 2019 Nat. Commun. 10 297
[98] Kawabata K, Shiozaki K, Ueda M and Sato M 2019 Phys. Rev. X 9 041015
[99] Konotop V V, Yang J and Zezyulin D A 2016 Rev. Mod. Phys. 88 035002
[100] Suchkov S V, Sukhorukov A A, Huang J, Dmitriev S V, Lee C and Kivshar Y S 2016 Laser & Photon. Rev. 10 177
[101] Feng L, El-Ganainy R and Ge L 2017 Nat. Photon. 11 752
[102] Longhi S 2017 Europhys. Lett. 120 64001
[103] El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S and Christodoulides D N 2018 Nat. Phys. 14 11
[104] Miri M A and Alù A 2019 Science 363 eaar7709
[105] Özdemir S K, Rotter S, Nori F and Yang L 2019 Nat. Mater. 18 783
[106] Gupta S K, Zou Y, Zhu X Y, Lu M H, Zhang L J, Liu X P and Chen Y F 2019 Adv. Mater. 32 1903639
[107] Bernard D and LeClair A 2001 arXiv:cond-mat/0110649
[108]We emphasize two aspects in the definitions of symmetries that are distinct from the topological classification (Ref.[98]): (i) The signs $\epsilon _{\Bbbk }$ and $\epsilon _{q}$ in the $K$ and $Q$ symmetries, which are absent in the definitions of the $K$ and $Q$ symmetries for topological classification because $H_{\rm c}$ and $iH_{\rm c}$ have identical topological properties. However, the scattering properties of $H_{\rm c}$ and $iH_{\rm c}$ are not identical. The symmetries with opposite parities impose different scattering features. (ii) The even-parity $P$ symmetry.
[109]The combination of two symmetries that belong to the same type gives the P symmetry. The combination of the P symmetry and any of the C, K, Q symmetries does not alter the C, K, Q symmetries. The combination of any two of the three symmetries C, K, Q produces the third symmetry.
[110] Gou W, Chen T, Xie D, Xiao T, Deng T S, Gadway B, Yi W and Yan B 2020 Phys. Rev. Lett. 124 070402
[111] Fleury R, Sounas D L, Sieck C F, Haberman M R and Alù A 2014 Science 343 516
[112] Sliwa K M, Hatridge M, Narla A, Shankar S, Frunzio L, Schoelkopf R J and Devoret M H 2015 Phys. Rev. X 5 041020
[113] Yang F, Liu Y C and You L 2017 Phys. Rev. A 96 053845
[114] Wu H C, Yang X M, Jin L and Song Z 2020 Phys. Rev. B 102 161101(R)
[115] Konotop V V and Zezyulin D A 2018 Phys. Rev. Lett. 120 123902
[116] Müllers A, Santra B, Baals C, Jiang J, Benary J, Labouvie R, Zezyulin D A, Konotop V V and Ott H 2018 Sci. Adv. 4 eaat6539
[117] Ramezani H, Jha P K, Wang Y and Zhang X 2018 Phys. Rev. Lett. 120 043901
[118] Haus H A and Huang W P 1991 Proc. IEEE 79 1505
[119] Fan S, Suh W and Joannopoulos J D 2003 J. Opt. Soc. Am. A 20 569
[120]Joannopoulos J D, Johnson S G, Winn J N and Meade R D 2008 Photonic Crystals: Molding the Flow of Light (Princeton, NJ: Princeton University Press)
[121] Estep N A, Sounas D L, Soric J and Alù A 2014 Nat. Phys. 10 923
[122] Jin L and Song Z 2010 Phys. Rev. A 81 022107
[123] Jin L and Song Z 2010 Phys. Rev. A 81 032109
[124] Jin L and Song Z 2011 J. Phys. A 44 375304
[125]If the determint $\left\vert \varDelta \right\vert $ of matrix $\varDelta $ vanishes, just regard the inverse matrix $\varDelta ^{-1} $ as the adjoint matrix $\varDelta ^{\mathrm{adj}}$ of matrix $\varDelta $ in Eqs. (13) and (14). They satisfy the relation $\varDelta^{-1}=\varDelta ^{\mathrm{adj}}/\left\vert \varDelta \right\vert $.
[126] Wang P, Jin L, Zhang G and Song Z 2016 Phys. Rev. A 94 053834
[127] Jin L 2018 Phys. Rev. A 98 022117
[128] Zhang X Z and Song Z 2013 Ann. Phys. (N.Y.) 339 109
[129] Li C, Jin L and Song Z 2017 Phys. Rev. A 95 022125
[130] Jin L and Song Z 2012 Phys. Rev. A 85 012111
[131] Malzard S, Poli C and Schomerus H 2015 Phys. Rev. Lett. 115 200402
[132] Longhi S, Gatti D and Valle G D 2015 Phys. Rev. B 92 094204
[133] Ren J, Liu Y G N, Parto M, Hayenga W E, Hokmabadi M P, Christodoulides D N and Khajavikhan M 2018 Opt. Express 26 27153
[134] Jin L and Song Z 2019 Phys. Rev. B 99 081103(R)
[135] Peterson C W, Kim S, Bernhard J T and Bahl G 2018 Sci. Adv. 4 eaat0232
[136] Jin L and Song Z 2016 Phys. Rev. A 93 062110
[137] Jin L 2018 Phys. Rev. A 97 012121
[138] Hafezi M, Mittal S, Fan J, Migdall A and Taylor J M 2013 Nat. Photon. 7 1001
[139] Hafezi M 2014 Phys. Rev. Lett. 112 210405
[140] Jin L, Wang P and Song Z 2016 Sci. Rep. 6 32919
[141] Longhi S 2015 Opt. Lett. 40 1278
[142] Peng P, Cao W, Shen C, Qu W, Wen J, Jiang L and Xiao Y 2016 Nat. Phys. 12 1139
[143] Li Y, Peng Y G, Han L, Miri M A, Li W, Xiao M, Zhu X F, Zhao J, Alù A, Fan S and Qiu C W 2019 Science 364 170
[144] Jiang Y, Mei Y, Zuo Y, Zhai Y, Li J, Wen J and Du S 2019 Phys. Rev. Lett. 123 193604
[145] Wang Y P and Hu C M 2020 J. Appl. Phys. 127 130901
[146] He C, Zhang X L, Feng L, Lu M H and Chen Y F 2011 Appl. Phys. Lett. 99 151112
[147] Li X F, Ni X, Feng L, Lu M H, He C and Chen Y F 2011 Phys. Rev. Lett. 106 084301
[148] Xu Y L, Feng L, Lu M H and Chen Y F 2012 Phys. Lett. A 376 886
[149] Huang Y, Shen Y, Min C, Fan S and Veronis G 2017 Nanophotonics 6 977
[150] Cao S and Hou Z 2019 Phys. Rev. Appl. 12 064016
[151] Droulias S, Katsantonis I, Kafesaki M, Soukoulis C M and Economou E N 2019 Phys. Rev. Lett. 122 213201
[152] Katsantonis I, Droulias S, Soukoulis C M, Economou E N and Kafesaki M 2020 Photonics 7 43
[153] Jin L, Wang P and Song Z 2017 New J. Phys. 19 015010