[1] | Klenow H and Henningsen I 1970 Proc. Natl. Acad. Sci. USA 65 168 | Selective Elimination of the Exonuclease Activity of the Deoxyribonucleic Acid Polymerase from Escherichia coli B by Limited Proteolysis
[2] | Bebenek K, Joyce C M, Fitzgerald M P, and Kunkel T A 1990 J. Biol. Chem. 265 13878 | The fidelity of DNA synthesis catalyzed by derivatives of Escherichia coli DNA polymerase I.
[3] | Patel P H, Suzuki M, Adman E, Shinkai A, and Loeb L A 2001 J. Mol. Biol. 308 823 | Prokaryotic DNA polymerase I: evolution, structure, and “base flipping” mechanism for nucleotide selection
[4] | Ollis D L, Brick P, Hamlin R, Xuong N G, and Steitz T A 1985 Nature 313 762 | Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP
[5] | Korolev S, Nayal M, Barnes W M, Di Cera E, and Waksman G 1995 Proc. Natl. Acad. Sci. USA 92 9264 | Crystal structure of the large fragment of Thermus aquaticus DNA polymerase I at 2.5-A resolution: structural basis for thermostability.
[6] | Kim Y, Eom S H, Wang J, Lee D S, Suh S W, and Steitz T A 1995 Nature 376 612 | Crystal structure of Thermus aquaticus DNA polymerase
[7] | Eom S H, Wang J, and Steitz T A 1996 Nature 382 278 | Structure of Taq polymerase with DNA at the polymerase active site
[8] | Kiefer J R, Mao C, Hansen C J, Basehore S L, Hogrefe H H, Braman J C, and Beese L S 1997 Structure 5 95 | Crystal structure of a thermostable Bacillus DNA polymerase l large fragment at 2.1 Å resolution
[9] | Doublie S and Ellenberger T 1998 Curr. Opin. Struct. Biol. 8 704 | The mechanism of action of T7 DNA polymerase
[10] | Doublie S, Tabor S, Long A M, Richardson C C, and Ellenberger T 1998 Nature 391 251 | Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution
[11] | Li Y, Korolev S, and Waksman G 1998 EMBO J. 17 7514 | Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation
[12] | Doublie S, Sawaya M R, and Ellenberger T 1999 Structure 7 R31 | An open and closed case for all polymerases
[13] | Huang H, Chopra R, Verdine G L, and Harrison S C 1998 Science 282 1669 | Structure of a Covalently Trapped Catalytic Complex of HIV-1 Reverse Transcriptase: Implications for Drug Resistance
[14] | Joyce C M, Potapova O, DeLucia A M, Huang X, Basu V P, and Grindley N D F 2008 Biochemistry 47 6103 | Fingers-Closing and Other Rapid Conformational Changes in DNA Polymerase I (Klenow Fragment) and Their Role in Nucleotide Selectivity
[15] | Dahlberg M E and Benkovic S J 1991 Biochemistry 30 4835 | Kinetic mechanism of DNA polymerase I(Klenow fragment): identification of a second conformational change and evaluation of the internal equilibrium constant
[16] | Christian T D, Romano L J, and Rueda D 2009 Proc. Natl. Acad. Sci. USA 106 21109 | Single-molecule measurements of synthesis by DNA polymerase with base-pair resolution
[17] | Schwartz J J and Quake S R 2009 Proc. Natl. Acad. Sci. USA 106 20294 | Single molecule measurement of the "speed limit" of DNA polymerase
[18] | Maier B, Bensimon D, and Croquette V 2000 Proc. Natl. Acad. Sci. USA 97 12002 | Replication by a single DNA polymerase of a stretched single-stranded DNA
[19] | Wuite G J L, Smith S B, Young M, Keller D, and Bustamante C 2000 Nature 404 103 | Single-molecule studies of the effect of template tension on T7 DNA polymerase activity
[20] | Goel A, Frank-Kamenetskii M D, Ellenberger T, and Herschbach D 2001 Proc. Natl. Acad. Sci. USA 98 8485 | Tuning DNA "strings": Modulating the rate of DNA replication with mechanical tension
[21] | Goel A, Astumian R D, and Herschbach D 2003 Proc. Natl. Acad. Sci. USA 100 9699 | Tuning and switching a DNA polymerase motor with mechanical tension
[22] | Andricioaei I, Goel A, Herschbach D, and Karplus M 2004 Biophys. J. 87 1478 | Dependence of DNA Polymerase Replication Rate on External Forces: A Model Based on Molecular Dynamics Simulations
[23] | Venkatramani R and Radhakrishnan R 2008 Phys. Rev. Lett. 100 088102 | Computational Study of the Force Dependence of Phosphoryl Transfer during DNA Synthesis by a High Fidelity Polymerase
[24] | Xie P 2013 J. Mol. Model. 19 1379 | Dynamics of DNA polymerase I (Klenow fragment) under external force
[25] | Xie P 2007 Arch. Biochem. Biophys. 457 73 | Model for forward polymerization and switching transition between polymerase and exonuclease sites by DNA polymerase molecular motors
[26] | Xie P 2011 J. Theor. Biol. 277 111 | A model for the dynamics of mammalian family X DNA polymerases
[27] | Xie P 2012 J. Mol. Model. 18 1951 | Modeling translocation dynamics of strand displacement DNA synthesis by DNA polymerase I
[28] | Turner R M, Grindley N D F, and Joyce C M 2003 Biochemistry 42 2373 | Interaction of DNA Polymerase I (Klenow Fragment) with the Single-Stranded Template beyond the Site of Synthesis
[29] | Datta K, Wowor A J, Richard A J, and LiCata V J 2006 Biophys. J. 90 1739 | Temperature Dependence and Thermodynamics of Klenow Polymerase Binding to Primed-Template DNA
[30] | Thomen P, Lopez P J, and Heslot F 2005 Phys. Rev. Lett. 94 128102 | Unravelling the Mechanism of RNA-Polymerase Forward Motion by Using Mechanical Force
[31] | Mohapatra S, Lin C T, Feng X A, Basu A, and Ha T 2020 Chem. Rev. 120 36 | Single-Molecule Analysis and Engineering of DNA Motors