[1] | Verstraete F, Murg V, and Cirac J I 2008 Adv. Phys. 57 143 | Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems
[2] | Orús R 2019 Nat. Rev. Phys. 1 538 | Tensor networks for complex quantum systems
[3] | Ran S J, Tirrito E, Peng C, Chen X, Tagliacozzo L, Su G, and Lewenstein M 2020 Tensor Network Contractions: Methods and Applications to Quantum Many-Body Systems Part of the Lecture Notes in Physics book series (LNP, volume 964) (Berlin: Springer) |
[4] | Ceperley D and Alder B 1986 Science 231 555 | Quantum Monte Carlo
[5] | Nightingale M P and Umrigar C J 1998 Quantum Monte Carlo Methods in Physics and Chemistry (Berlin: Springer) |
[6] | Wang L 2016 Phys. Rev. B 94 195105 | Discovering phase transitions with unsupervised learning
[7] | Carrasquilla J and Melko R G 2017 Nat. Phys. 13 431 | Machine learning phases of matter
[8] | Van Nieuwenburg E P, Liu Y H, and Huber S D 2017 Nat. Phys. 13 435 | Learning phase transitions by confusion
[9] | Zhang P, Shen H, and Zhai H 2018 Phys. Rev. Lett. 120 066401 | Machine Learning Topological Invariants with Neural Networks
[10] | Rem B S, Käming N, Tarnowski M, Asteria L, Fläschner N, Becker C, Sengstock K, and Weitenberg C 2019 Nat. Phys. 15 917 | Identifying quantum phase transitions using artificial neural networks on experimental data
[11] | Rodriguez-Nieva J F and Scheurer M S 2019 Nat. Phys. 15 790 | Identifying topological order through unsupervised machine learning
[12] | Scheurer M S and Slager R J 2020 Phys. Rev. Lett. 124 226401 | Unsupervised Machine Learning and Band Topology
[13] | Rupp M, Tkatchenko A, Müller K R, and Von Lilienfeld O A 2012 Phys. Rev. Lett. 108 058301 | Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
[14] | Xie T and Grossman J C 2018 Phys. Rev. Lett. 120 145301 | Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties
[15] | Hanakata P Z, Cubuk E D, Campbell D K, and Park H S 2018 Phys. Rev. Lett. 121 255304 | Accelerated Search and Design of Stretchable Graphene Kirigami Using Machine Learning
[16] | Carleo G and Troyer M 2017 Science 355 602 | Solving the quantum many-body problem with artificial neural networks
[17] | Choo K, Carleo G, Regnault N, and Neupert T 2018 Phys. Rev. Lett. 121 167204 | Symmetries and Many-Body Excitations with Neural-Network Quantum States
[18] | Glasser I, Pancotti N, August M, Rodriguez I D, and Cirac J I 2018 Phys. Rev. X 8 011006 | Neural-Network Quantum States, String-Bond States, and Chiral Topological States
[19] | Deng D L, Li X, and Sarma S D 2017 Phys. Rev. B 96 195145 | Machine learning topological states
[20] | Avella A and Mancini F et al. 2012 Strongly Correlated Systems (Berlin: Springer) | Springer Series in Solid-State Sciences
[21] | Kuramoto Y 2020 Quantum Many-Body Physics (Berlin: Springer) | Lecture Notes in Physics
[22] | Fournier R, Wang L, Yazyev O V, and Wu Q 2020 Phys. Rev. Lett. 124 056401 | Artificial Neural Network Approach to the Analytic Continuation Problem
[23] | Teoh Y H, Drygala M, Melko R G, and Islam R 2020 Quantum Sci. Technol. 5 024001 | Machine learning design of a trapped-ion quantum spin simulator
[24] | Hanakata P Z, Cubuk E D, Campbell D K, and Park H S 2020 Phys. Rev. Res. 2 042006 | Forward and inverse design of kirigami via supervised autoencoder
[25] | Arsenault L F, Neuberg R, Hannah L A, and Millis A J 2017 Inverse Probl. 33 115007 | Projected regression method for solving Fredholm integral equations arising in the analytic continuation problem of quantum physics
[26] | Xin T, Lu S, Cao N, Anikeeva G, Lu D, Li J, Long G, and Zeng B 2019 npj Quantum Inf. 5 1 | Soundness and completeness of quantum root-mean-square errors
[27] | Hegde G and Bowen R C 2017 Sci. Rep. 7 42669 | Machine-learned approximations to Density Functional Theory Hamiltonians
[28] | Li X Y, Lou F, Gong X, and Xiang H 2020 New J. Phys. 22 053036 | Constructing realistic effective spin Hamiltonians with machine learning approaches
[29] | Sehanobish A, Corzo H H, Kara O, and van Dijk D 2020 arXiv:2006.13297 [cs.LG] | Learning Potentials of Quantum Systems using Deep Neural Networks
[30] | LeCun Y, Boser B, Denker J S, Henderson D, Howard R E, Hubbard W, and Jackel L D 1989 Neural Comput. 1 541 | Backpropagation Applied to Handwritten Zip Code Recognition
[31] | Krizhevsky A, Sutskever I, and Hinton G E 2017 Commun. ACM 60 84 | ImageNet classification with deep convolutional neural networks
[32] | Aloysius N and Geetha M 2017 2017 International Conference on Communication and Signal Processing pp 0588–0592 | A review on deep convolutional neural networks
[33] | Yao G, Lei T, and Zhong J 2019 Pattern Recognit. Lett. 118 14 | A review of Convolutional-Neural-Network-based action recognition
[34] | Sultana F, Sufian A, and Dutta P 2020 Intelligent Computing: Image Processing Based Applications (Berlin: Springer) p 1 | Advances in Intelligent Systems and Computing
[35] | Berthusen N F, Sizyuk Y, Scheurer M S, and Orth P P 2020 arXiv:2011.12911 [cond-mat.str-el] | Learning crystal field parameters using convolutional neural networks
[36] | Goh G B, Siegel C, Vishnu A, Hodas N O, and Baker N 2017 arXiv:1706.06689 [stat.ML] | Chemception: A Deep Neural Network with Minimal Chemistry Knowledge Matches the Performance of Expert-developed QSAR/QSPR Models
[37] | Laanait N, Romero J, Yin J, Young M T, Treichler S, Starchenko V, Borisevich A, Sergeev A, and Matheson M 2019 arXiv:1909.11150 [cs.LG] | Exascale Deep Learning for Scientific Inverse Problems
[38] | Das A and Chakrabarti B K 2008 Rev. Mod. Phys. 80 1061 | Colloquium : Quantum annealing and analog quantum computation
[39] | Rodrı́guez-Laguna J, Migdał P, Berganza M I N, Lewenstein M, and Sierra G 2012 New J. Phys. 14 053028 | Qubism: self-similar visualization of many-body wavefunctions
[40] | White S R 1992 Phys. Rev. Lett. 69 2863 | Density matrix formulation for quantum renormalization groups
[41] | White S R 1993 Phys. Rev. B 48 10345 | Density-matrix algorithms for quantum renormalization groups
[42] | Hinton G, Srivastava N, and Swersky K 2012 Neural Networks for Machine Learning Lecture 6a: Overview of Mini-batch Gradient Descent |
[43] | Verstraete F and Cirac J I 2006 Phys. Rev. B 73 094423 | Matrix product states represent ground states faithfully
[44] | Zauner V, Draxler D, Vanderstraeten L, Degroote M, Haegeman J, Rams M M, Stojevic V, Schuch N, and Verstraete F 2015 New J. Phys. 17 053002 | Transfer matrices and excitations with matrix product states
[45] | Franchini F 2017 An Introduction to Integrable Techniques for One-dimensional Quantum Systems (Berlin: Springer) | Lecture Notes in Physics
[46] | Schaffer R, Huh Y, Hwang K, and Kim Y B 2017 Phys. Rev. B 95 054410 | Quantum spin liquid in a breathing kagome lattice
[47] | Repellin C, He Y C, and Pollmann F 2017 Phys. Rev. B 96 205124 | Stability of the spin- kagome ground state with breathing anisotropy
[48] | Mitarai K, Negoro M, Kitagawa M, and Fujii K 2018 Phys. Rev. A 98 032309 | Quantum circuit learning
[49] | Liu J G and Wang L 2018 Phys. Rev. A 98 062324 | Differentiable learning of quantum circuit Born machines
[50] | Zhu D, Linke N M, Benedetti M, Landsman K A, Nguyen N H, Alderete C H, Perdomo-Ortiz A, Korda N, Garfoot A, Brecque C et al. 2019 Sci. Adv. 5 eaaw9918 | Training of quantum circuits on a hybrid quantum computer
[51] | Georgescu I M, Ashhab S, and Nori F 2014 Rev. Mod. Phys. 86 153 | Quantum simulation
[52] | Vogel K and Risken H 1989 Phys. Rev. A 40 2847 | Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase
[53] | Cramer M, Plenio M B, Flammia S T, Somma R, Gross D, Bartlett S D, Landon-Cardinal O, Poulin D, and Liu Y K 2010 Nat. Commun. 1 149 | Efficient quantum state tomography
[54] | Lanyon B, Maier C, Holzäpfel M, Baumgratz T, Hempel C, Jurcevic P, Dhand I, Buyskikh A, Daley A, Cramer M et al. 2017 Nat. Phys. 13 1158 | Efficient tomography of a quantum many-body system
[55] | Cook S A 1971 The Complexity of Theorem-Proving Procedures in STOC'71: Proceedings of the Third Annual Acm Symposium on Theory of Computing (New York: ACM Press) pp 151–158 | The complexity of theorem-proving procedures
[56] | Krzakala F and Zdeborová L 2009 Phys. Rev. Lett. 102 238701 | Hiding Quiet Solutions in Random Constraint Satisfaction Problems