[1] | Kojima A, Teshima K, Shirai Y, and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050 | Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells
[2] | Im J H, Lee C R, Lee J W, Park S W, and Park N G 2011 Nanoscale 3 4088 | 6.5% efficient perovskite quantum-dot-sensitized solar cell
[3] | Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Gratzel M, and Park N G 2012 Sci. Rep. 2 591 | Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%
[4] | Lee M M, Teuscher J, Miyasaka T, Murakami T N, and Snaith H J 2012 Science 338 643 | Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites
[5] | Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, and Gratzel M 2013 Nature 499 316 | Sequential deposition as a route to high-performance perovskite-sensitized solar cells
[6] | Liu M Z, Johnston M B, and Snaith H J 2013 Nature 501 395 | Efficient planar heterojunction perovskite solar cells by vapour deposition
[7] | Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, and Seok S I 2014 Nat. Mater. 13 897 | Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells
[8] | Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, and Yang Y 2014 Science 345 542 | Interface engineering of highly efficient perovskite solar cells
[9] | Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, and Seok S I 2015 Science 348 1234 | High-performance photovoltaic perovskite layers fabricated through intramolecular exchange
[10] | Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, and Seok S I 2017 Science 356 1376 | Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells
[11] | Jung E H, Jeon N J, Park E Y, Moon C S, Shin T J, Yang T Y, Noh J H, and Seo J 2019 Nature 567 511 | Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene)
[12] | Jiang Q, Zhao Y, Zhang X W, Yang X L, Chen Y, Chu Z M, Ye Q F, Li X X, Yin Z G, and You J B 2019 Nat. Photon. 13 460 | Surface passivation of perovskite film for efficient solar cells
[13] | Yoo J J, Seo G, Chua M R, Park T G, Lu Y, Rotermund F, Kim Y K, Moon C S, Jeon N J, Correa-Baena J P, Bulovic V, Shin S S, Bawendi M G, and Seo J 2021 Nature 590 587 | Efficient perovskite solar cells via improved carrier management
[14] | https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200104.pdf |
[15] | Green M A, Ho-Baillie A, and Snaith H J 2014 Nat. Photon. 8 506 | The emergence of perovskite solar cells
[16] | Fan H, Li F, Wang P, Gu Z, Huang J H, Jiang K J, Guan B, Yang L M, Zhou X, and Song Y 2020 Nat. Commun. 11 5402 | Methylamine-assisted growth of uniaxial-oriented perovskite thin films with millimeter-sized grains
[17] | Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, and Seok S I 2015 Nature 517 476 | Compositional engineering of perovskite materials for high-performance solar cells
[18] | Saliba M, Matsui T, Seo J Y, Domanski K, Correa-Baena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A, and Gratzel M 2016 Energy & Environ. Sci. 9 1989 | Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency
[19] | Wang C, Zhang Y, Gu F, Zhao Z, Li H, Jiang H, Bian Z, and Liu Z 2021 Matter 4 709 | Illumination Durability and High-Efficiency Sn-Based Perovskite Solar Cell under Coordinated Control of Phenylhydrazine and Halogen Ions
[20] | Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Gratzel M, Mhaisalkar S, and Sum T C 2013 Science 342 344 | Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3
[21] | Yin W J, Shi T, and Yan Y 2014 Adv. Mater. 26 4653 | Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance
[22] | Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, and Snaith H J 2013 Science 342 341 | Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber
[23] | Yin W J, Shi T T, and Yan Y F 2014 Appl. Phys. Lett. 104 063903 | Unusual defect physics in CH 3 NH 3 PbI 3 perovskite solar cell absorber
[24] | Grancini G, Roldan-Carmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, De Angelis F, Graetzel M, and Nazeeruddin M K 2017 Nat. Commun. 8 15684 | One-Year stable perovskite solar cells by 2D/3D interface engineering
[25] | Ndiaye A, Charki A, Kobi A, Kebe C M F, Ndiaye P A, and Sambou V 2013 Sol. Energy 96 140 | Degradations of silicon photovoltaic modules: A literature review
[26] | Meng L, You J B, and Yang Y 2018 Nat. Commun. 9 5265 | Addressing the stability issue of perovskite solar cells for commercial applications
[27] | Wang Y, Liu X, Zhou Z, Ru P, Chen H, Yang X, and Han L 2019 Adv. Mater. 31 e1803231 | Reliable Measurement of Perovskite Solar Cells
[28] | Qiu F, Chu J Y, Liu Z R, Xiang J Z, Yang J, and Wang C 2020 Sol. RRL 4 2000452 | Insight into the Origins of Figures of Merit and Design Strategies for Organic/Inorganic Lead‐Halide Perovskite Solar Cells
[29] | Min H, Kim M, Lee S U, Kim H, Kim G, Choi K, Lee J H, and Seok S I 2019 Science 366 749 | Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide
[30] | Stolterfoht M, Wolff C M, Márquez J A, Zhang S, Hages C J, Rothhardt D, Albrecht S, Burn P L, Meredith P, Unold T, and Neher D 2018 Nat. Energy 3 847 | Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells
[31] | Caprioglio P, Stolterfoht M, Wolff C M, Unold T, Rech B, Albrecht S, and Neher D 2019 Adv. Energy Mater. 9 1901631 | On the Relation between the Open‐Circuit Voltage and Quasi‐Fermi Level Splitting in Efficient Perovskite Solar Cells
[32] | Ma C and Park N G 2020 Chem 6 1254 | A Realistic Methodology for 30% Efficient Perovskite Solar Cells
[33] | Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510 | Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells
[34] | Park N G and Segawa H 2018 ACS Photon. 5 2970 | Research Direction toward Theoretical Efficiency in Perovskite Solar Cells
[35] | Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, and Snaith H J 2014 Energy & Environ. Sci. 7 982 | Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells
[36] | Mei A Y, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Gratzel M, and Han H W 2014 Science 345 295 | A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability
[37] | Heo J H, Han H J, Kim D, Ahn T K, and Im S H 2015 Energy & Environ. Sci. 8 1602 | Hysteresis-less inverted CH 3 NH 3 PbI 3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency
[38] | Wu Y, Xie F, Chen H, Yang X, Su H, Cai M, Zhou Z, Noda T, and Han L 2017 Adv. Mater. 29 1701073 | Thermally Stable MAPbI 3 Perovskite Solar Cells with Efficiency of 19.19% and Area over 1 cm 2 achieved by Additive Engineering
[39] | Han Q, Bae S H, Sun P, Hsieh Y T, Yang Y M, Rim Y S, Zhao H, Chen Q, Shi W, Li G, and Yang Y 2016 Adv. Mater. 28 2253 | Single Crystal Formamidinium Lead Iodide (FAPbI 3 ): Insight into the Structural, Optical, and Electrical Properties
[40] | Binek A, Hanusch F C, Docampo P, and Bein T 2015 J. Phys. Chem. Lett. 6 1249 | Stabilization of the Trigonal High-Temperature Phase of Formamidinium Lead Iodide
[41] | Ono L K, Juarez-Perez E J, and Qi Y 2017 ACS Appl. Mater. & Interfaces 9 30197 | Progress on Perovskite Materials and Solar Cells with Mixed Cations and Halide Anions
[42] | Kim G, Min H, Lee K S, Lee D Y, Yoon S M, and Seok S I 2020 Science 370 108 | Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells
[43] | Lu H Z, Liu Y H, Ahlawat P, Mishra A, Tress W R, Eickemeyer F T, Yang Y G, Fu F, Wang Z W, Avalos C E, Carlsen B I, Agarwalla A, Zhang X, Li X G, Zhan Y Q, Zakeeruddin S M, Emsley L, Rothlisberger U, Zheng L R, Hagfeldt A, and Gratzel M 2020 Science 370 eabb8985 | Vapor-assisted deposition of highly efficient, stable black-phase FAPbI 3 perovskite solar cells
[44] | Hui W, Chao L, Lu H, Xia F, Wei Q, Su Z, Niu T, Tao L, Du B, Li D, Wang Y, Dong H, Zuo S, Li B, Shi W, Ran X, Li P, Zhang H, Wu Z, Ran C, Song L, Xing G, Gao X, Zhang J, Xia Y, Chen Y, and Huang W 2021 Science 371 1359 | Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity
[45] | Yang Z, Rajagopal A, and Jen A K 2017 Adv. Mater. 29 1704418 | Ideal Bandgap Organic–Inorganic Hybrid Perovskite Solar Cells
[46] | Gao F, Zhao Y, Zhang X W, and You J B 2020 Adv. Energy Mater. 10 1902650 | Recent Progresses on Defect Passivation toward Efficient Perovskite Solar Cells
[47] | Zheng X, Chen B, Dai J, Fang Y, Bai Y, Lin Y, Wei H, Zeng X C, and Huang J 2017 Nat. Energy 2 17102 | Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations
[48] | Jiang Q, Chu Z N, Wang P Y, Yang X L, Liu H, Wang Y, Yin Z G, Wu J L, Zhang X W, and You J B 2017 Adv. Mater. 29 1703852 | Planar‐Structure Perovskite Solar Cells with Efficiency beyond 21%
[49] | Chen Q, Zhou H, Song T B, Luo S, Hong Z, Duan H S, Dou L, Liu Y, and Yang Y 2014 Nano Lett. 14 4158 | Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells
[50] | Jeong J, Kim M, Seo J, Lu H, Ahlawat P, Mishra A, Yang Y, Hope M A, Eickemeyer F T, Kim M, Yoon Y J, Choi I W, Darwich B P, Choi S J, Jo Y, Lee J H, Walker B, Zakeeruddin S M, Emsley L, Rothlisberger U, Hagfeldt A, Kim D S, Gratzel M, and Kim J Y 2021 Nature 592 381 | Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells
[51] | Wang R, Xue J, Meng L, Lee J W, Zhao Z, Sun P, Cai L, Huang T, Wang Z, Wang Z K, Duan Y, Yang J L, Tan S, Yuan Y, Huang Y, and Yang Y 2019 Joule 3 1464 | Caffeine Improves the Performance and Thermal Stability of Perovskite Solar Cells
[52] | Correa B J P, Steier L, Tress W, Saliba M, Neutzner S, Matsui T, Giordano F, Jacobsson T J, Srimath K A R, Zakeeruddin S M, Petrozza A, Abate A, Nazeeruddin M K, Grätzel M, and Hagfeldt A 2015 Energy & Environ. Sci. 8 2928 | Highly efficient planar perovskite solar cells through band alignment engineering
[53] | Jiang Q, Zhang L Q, Wang H L, Yang X L, Meng J H, Liu H, Yin Z G, Wu J L, Zhang X W, and You J B 2017 Nat. Energy 2 16177 | Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells
[54] | Ke W, Fang G, Liu Q, Xiong L, Qin P, Tao H, Wang J, Lei H, Li B, Wan J, Yang G, and Yan Y 2015 J. Am. Chem. Soc. 137 6730 | Low-Temperature Solution-Processed Tin Oxide as an Alternative Electron Transporting Layer for Efficient Perovskite Solar Cells
[55] | Jeon N J, Na H, Jung E H, Yang T Y, Lee Y G, Kim G, Shin H W, Seok S I, Lee J, and Seo J 2018 Nat. Energy 3 682 | A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells
[56] | Tan H R, Jain A, Voznyy O, Lan X Z, De Arquer F P G, Fan J Z, Quintero-Bermudez R, Yuan M J, Zhang B, Zhao Y C, Fan F J, Li P C, Quan L N, Zhao Y B, Lu Z H, Yang Z Y, Hoogland S, and Sargent E H 2017 Science 355 722 | Efficient and stable solution-processed planar perovskite solar cells via contact passivation
[57] | Peng J, Walter D, Ren Y, Tebyetekerwa M, Wu Y, Duong T, Lin Q, Li J, Lu T, Mahmud M A, Lem O L C, Zhao S, Liu W, Liu Y, Shen H, Li L, Kremer F, Nguyen H T, Choi D Y, Weber K J, Catchpole K R, and White T P 2021 Science 371 390 | Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells
[58] | Yang D, Yang R, Wang K, Wu C, Zhu X, Feng J, Ren X, Fang G, Priya S, and Liu S F 2018 Nat. Commun. 9 3239 | High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2
[59] | Bach U, Lupo D, Comte P, Moser J E, Weissortel F, Salbeck J, Spreitzer H, and Gratzel M 1998 Nature 395 583 | Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies
[60] | Snaith H J and Schmidt-Mende L 2007 Adv. Mater. 19 3187 | Advances in Liquid-Electrolyte and Solid-State Dye-Sensitized Solar Cells
[61] | Noh J H, Jeon N J, Choi Y C, Nazeeruddin M K, Grätzel M, and Seok S I 2013 J. Mater. Chem. A 1 11842 | Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material
[62] | Wang S, Huang Z, Wang X, Li Y, Gunther M, Valenzuela S, Parikh P, Cabreros A, Xiong W, and Meng Y S 2018 J. Am. Chem. Soc. 140 16720 | Unveiling the Role of tBP–LiTFSI Complexes in Perovskite Solar Cells
[63] | Ding C, Huang R, Ahläng C, Lin J, Zhang L, Zhang D, Luo Q, Li F, Österbacka R, and Ma C Q 2021 J. Mater. Chem. A 9 7575 | Synergetic effects of electrochemical oxidation of Spiro-OMeTAD and Li + ion migration for improving the performance of n–i–p type perovskite solar cells
[64] | Jeong M, Choi I W, Go E M, Cho Y, Kim M, Lee B, Jeong S, Jo Y, Choi H W, Lee J, Bae J H, Kwak S K, Kim D S, and Yang C 2020 Science 369 1615 | Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss
[65] | Song S, Park E Y, Ma B S, Kim D J, Park H H, Kim Y Y, Shin S S, Jeon N J, Kim T S, and Seo J 2021 Adv. Energy Mater. 11 2003382 | Selective Defect Passivation and Topographical Control of 4‐Dimethylaminopyridine at Grain Boundary for Efficient and Stable Planar Perovskite Solar Cells
[66] | Jeong M J, Yeom K M, Kim S J, Jung E H, and Noh J H 2021 Energy & Environ. Sci. 14 2419 | Spontaneous interface engineering for dopant-free poly(3-hexylthiophene) perovskite solar cells with efficiency over 24%
[67] | Li N, Niu X, Chen Q, and Zhou H 2020 Chem. Soc. Rev. 49 8235 | Towards commercialization: the operational stability of perovskite solar cells
[68] | Kim H S, Seo J Y, and Park N G 2016 ChemSusChem 9 2528 | Material and Device Stability in Perovskite Solar Cells
[69] | Pellet N, Giordano F, Dar M I, Gregori G, Zakeeruddin S M, Maier J, and Gratzel M 2017 Prog. Photovoltaics 25 942 | Hill climbing hysteresis of perovskite-based solar cells: a maximum power point tracking investigation
[70] | Khenkin M V, Katz E A, Abate A, Bardizza G, Berry J J, Brabec C, Brunetti F, Bulović V, Burlingame Q, Di Carlo A, Cheacharoen R, Cheng Y B, Colsmann A, Cros S, Domanski K, Dusza M, Fell C J, Forrest S R, Galagan Y, Di Girolamo D, Grätzel M, Hagfeldt A, Von Hauff E, Hoppe H, Kettle J, Köbler H, Leite M S, Liu S, Loo Y L, Luther J M, Ma C Q, Madsen M, Manceau M, Matheron M, Mcgehee M, Meitzner R, Nazeeruddin M K, Nogueira A F, Odabaşı O A, Park N G, Reese M O, De Rossi F, Saliba M, Schubert U S, Snaith H J, Stranks S D, Tress W, Troshin P A, Turkovic V, Veenstra S, Visoly-Fisher I, Walsh A, Watson T, Xie H, YıL R M R, Zakeeruddin S M, Zhu K, and Lira-Cantu M 2020 Nat. Energy 5 35 | Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures
[71] | Zheng C and Rubel O 2017 J. Phys. Chem. C 121 11977 | Ionization Energy as a Stability Criterion for Halide Perovskites
[72] | Eames C, Frost J M, Barnes P R F, O'regan B C, Walsh A, and Islam M S 2015 Nat. Commun. 6 7497 | Ionic transport in hybrid lead iodide perovskite solar cells
[73] | Yang J, Liu C, Cai C, Hu X, Huang Z, Duan X, Meng X, Yuan Z, Tan L, and Chen Y 2019 Adv. Energy Mater. 9 1900198 | High‐Performance Perovskite Solar Cells with Excellent Humidity and Thermo‐Stability via Fluorinated Perylenediimide
[74] | Li N, Tao S, Chen Y, Niu X, Onwudinanti C K, Hu C, Qiu Z, Xu Z, Zheng G, Wang L, Zhang Y, Li L, Liu H, Lun Y, Hong J, Wang X, Liu Y, Xie H, Gao Y, Bai Y, Yang S, Brocks G, Chen Q, and Zhou H 2019 Nat. Energy 4 408 | Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells
[75] | Wang L G, Zhou H P, Hu J N, Huang B L, Sun M Z, Dong B W, Zheng G H J, Huang Y, Chen Y H, Li L, Xu Z Q, Li N X, Liu Z, Chen Q, Sun L D, and Yan C H 2019 Science 363 265 | A Eu 3+ -Eu 2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells
[76] | Bai S, Da P, Li C, Wang Z, Yuan Z, Fu F, Kawecki M, Liu X, Sakai N, Wang J T W, Huettner S, Buecheler S, Fahlman M, Gao F, and Snaith H J 2019 Nature 571 245 | Planar perovskite solar cells with long-term stability using ionic liquid additives
[77] | Lin Y H, Sakai N, Da P, Wu J Y, Sansom H C, Ramadan A J, Mahesh S, Liu J L, Oliver R D J, Lim J, Aspitarte L, Sharma K, Madhu P K, Morales-Vilches A B, Nayak P K, Bai S, Gao F, Grovenor C R M, Johnston M B, Labram J G, Durrant J R, Ball J M, Wenger B, Stannowski B, and Snaith H J 2020 Science 369 96 | A piperidinium salt stabilizes efficient metal-halide perovskite solar cells
[78] | Li Z, Yang M J, Park J S, Wei S H, Berry J J, and Zhu K 2016 Chem. Mater. 28 284 | Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys
[79] | Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, Correa-Baena J P, Tress W R, Abate A, Hagfeldt A, and Gratzel M 2016 Science 354 206 | Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance
[80] | Matsui T, Yamamoto T, Nishihara T, Morisawa R, Yokoyama T, Sekiguchi T, and Negami T 2019 Adv. Mater. 31 1806823 | Compositional Engineering for Thermally Stable, Highly Efficient Perovskite Solar Cells Exceeding 20% Power Conversion Efficiency with 85 °C/85% 1000 h Stability
[81] | Ye Q F, Zhao Y, Mu S Q, Ma F, Gao F, Chu Z M, Yin Z G, Gao P Q, Zhang X W, and You J B 2019 Adv. Mater. 31 1905143 | Cesium Lead Inorganic Solar Cell with Efficiency beyond 18% via Reduced Charge Recombination
[82] | Tan S, Shi J, Yu B, Zhao W, Li Y, Li Y, Wu H, Luo Y, Li D, and Meng Q 2021 Adv. Funct. Mater. 31 2010813 | Inorganic Ammonium Halide Additive Strategy for Highly Efficient and Stable CsPbI 3 Perovskite Solar Cells
[83] | Yoon S M, Min H, Kim J B, Kim G, Lee K S, and Seok S I 2021 Joule 5 183 | Surface Engineering of Ambient-Air-Processed Cesium Lead Triiodide Layers for Efficient Solar Cells
[84] | Wang Y, Dar M I, Ono L K, Zhang T Y, Kan M, Li Y W, Zhang L J, Wang X T, Yang Y G, Gao X Y, Qi Y B, Gratzel M, and Zhao Y X 2019 Science 365 591 | Thermodynamically stabilized β-CsPbI 3 –based perovskite solar cells with efficiencies >18%
[85] | Yang S, Chen S S, Mosconi E, Fang Y J, Xiao X, Wang C C, Zhou Y, Yu Z H, Zhao J J, Gao Y L, De Angelis F, and Huang J S 2019 Science 365 473 | Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts
[86] | Wang Y B, Wu T H, Barbaud J, Kong W Y, Cui D Y, Chen H, Yang X D, and Han L Y 2019 Science 365 687 | Stabilizing heterostructures of soft perovskite semiconductors
[87] | Yang Y, Gao F, Gao S W, and Wei S H 2018 J. Mater. Chem. A 6 14949 | Origin of the stability of two-dimensional perovskites: a first-principles study
[88] | Lan C Y, Zhou Z Y, Wei R J, and Ho J C 2019 Mater. Today Energy 11 61 | Two-dimensional perovskite materials: From synthesis to energy-related applications
[89] | Li H D, Luo T Y, Zhang S F, Sun Z J, He X, Zhang W F, and Chang H X 2021 Energy Environ. Mater. 4 46 | Two‐Dimensional Metal‐Halide Perovskite‐based Optoelectronics: Synthesis, Structure, Properties and Applications
[90] | Ge C, Xue Y Z B, Li L, Tang B, and Hu H 2020 Front. Mater. 7 601179 | Recent Progress in 2D/3D Multidimensional Metal Halide Perovskites Solar Cells
[91] | Wang Z, Lin Q, Chmiel F P, Sakai N, Herz L M, and Snaith H J 2017 Nat. Energy 2 17135 | Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites
[92] | Chen P, Bai Y, Wang S, Lyu M, Yun J H, and Wang L 2018 Adv. Funct. Mater. 28 1706923 | In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells
[93] | Schloemer T H, Christians J A, Luther J M, and Sellinger A 2019 Chem. Sci. 10 1904 | Doping strategies for small molecule organic hole-transport materials: impacts on perovskite solar cell performance and stability
[94] | Jena A K, Numata Y, Ikegami M, and Miyasaka T 2018 J. Mater. Chem. A 6 2219 | Role of spiro-OMeTAD in performance deterioration of perovskite solar cells at high temperature and reuse of the perovskite films to avoid Pb-waste
[95] | Kim S G, Le T H, De Monfreid T, Goubard F, Bui T T, and Park N G 2021 Adv. Mater. 33 2007431 | Capturing Mobile Lithium Ions in a Molecular Hole Transporter Enhances the Thermal Stability of Perovskite Solar Cells
[96] | Yin X, Song Z, Li Z, and Tang W 2020 Energy & Environ. Sci. 13 4057 | Toward ideal hole transport materials: a review on recent progress in dopant-free hole transport materials for fabricating efficient and stable perovskite solar cells
[97] | Zhao B X, Yao C, Gu K, Liu T, Xia Y, and Loo Y L 2020 Energy & Environ. Sci. 13 4334 | A hole-transport material that also passivates perovskite surface defects for solar cells with improved efficiency and stability
[98] | Wu W Q, Yang Z B, Rudd P N, Shao Y C, Dai X Z, Wei H T, Zhao J J, Fang Y J, Wang Q, Liu Y, Deng Y H, Xiao X, Feng Y X, and Huang J S 2019 Sci. Adv. 5 eaav8925 | Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells
[99] | Yang M, Kim D H, Klein T R, Li Z, Reese M O, De Tremolet V B J, Berry J J, Van Hest M F A M, and Zhu K 2018 ACS Energy Lett. 3 322 | Highly Efficient Perovskite Solar Modules by Scalable Fabrication and Interconnection Optimization
[100] | Li Z, Li P, Chen G, Cheng Y, Pi X, Yu X, Yang D, Han L, Zhang Y, and Song Y 2020 ACS Appl. Mater. & Interfaces 12 39082 | Ink Engineering of Inkjet Printing Perovskite
[101] | Di Giacomo F, Shanmugam S, Fledderus H, Bruijnaers B J, Verhees W J H, Dorenkamper M S, Veenstra S C, Qiu W M, Gehlhaar R, Merckx T, Aernouts T, Andriessen R, and Galagan Y 2018 Sol. Energy Mater. Sol. Cells 181 53 | Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot die coating
[102] | Liu Z, Qiu L, Ono L K, He S, Hu Z, Jiang M, Tong G, Wu Z, Jiang Y, Son D Y, Dang Y, Kazaoui S, and Qi Y 2020 Nat. Energy 5 596 | A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability
[103] | Chen S S, Xiao X, Gu H Y, and Huang J S 2021 Sci. Adv. 7 eabe8130 | Iodine reduction for reproducible and high-performance perovskite solar cells and modules
[104] | Green M A, Dunlop E D, Hohl-Ebinger J, Yoshita M, Kopidakis N, and Hao X 2020 Prog. Photovoltaics 28 629 | Solar cell efficiency tables (version 56)
[105] | Eperon G E, Hörantner M T, and Snaith H J 2017 Nat. Rev. Chem. 1 0095 | Metal halide perovskite tandem and multiple-junction photovoltaics
[106] | Sahli F, Werner J, Kamino B A, Brauninger M, Monnard R, Paviet-Salomon B, Barraud L, Ding L, Diaz L J J, Sacchetto D, Cattaneo G, Despeisse M, Boccard M, Nicolay S, Jeangros Q, Niesen B, and Ballif C 2018 Nat. Mater. 17 820 | Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency
[107] | Al-Ashouri A, Kohnen E, Li B, Magomedov A, Hempel H, Caprioglio P, Marquez J A, Vilches A B M, Kasparavicius E, Smith J A, Phung N, Menzel D, Grischek M, Kegelmann L, Skroblin D, Gollwitzer C, Malinauskas T, Jost M, Matic G, Rech B, Schlatmann R, Topic M, Korte L, Abate A, Stannowski B, Neher D, Stolterfoht M, Unold T, Getautis V, and Albrecht S 2020 Science 370 1300 | Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction
[108] | Xiao K, Lin R, Han Q, Hou Y, Qin Z, Nguyen H T, Wen J, Wei M, Yeddu V, Saidaminov M I, Gao Y, Luo X, Wang Y, Gao H, Zhang C, Xu J, Zhu J, Sargent E H, and Tan H 2020 Nat. Energy 5 870 | All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant
[109] | Leijtens T, Bush K A, Prasanna R, and Mcgehee M D 2018 Nat. Energy 3 828 | Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors
[110] | Bush K A, Palmstrom A F, Yu Z S J, Boccard M, Cheacharoen R, Mailoa J P, Mcmeekin D P, Hoye R L Z, Bailie C D, Leijtens T, Peters I M, Minichetti M C, Rolston N, Prasanna R, Sofia S, Harwood D, Ma W, Moghadam F, Snaith H J, Buonassisi T, Holman Z C, Bent S F, and Mcgehee M D 2017 Nat. Energy 2 17009 | 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability
[111] | Lin R, Xiao K, Qin Z, Han Q, Zhang C, Wei M, Saidaminov M I, Gao Y, Xu J, Xiao M, Li A, Zhu J, Sargent E H, and Tan H 2019 Nat. Energy 4 864 | Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink