Loading [MathJax]/jax/output/SVG/jax.js

Photonic Thermal Rectification with Composite Metamaterials

Funds: Supported by the National Natural Science Foundation of China (Grant Nos. 11774252 and 92050104), the Qing Lan Project, and the PAPD of Jiangsu Higher Education Institutions.
  • Received Date: September 25, 2020
  • Published Date: December 31, 2020
  • We demonstrate strong photonic thermal rectification effect between polar dielectrics plate and the composite metamaterials containing nonspherical polar dielectric nanoparticles with small volume fractions. Thermal rectification efficiency is found to be adjusted by the volume fractions and the nanoparticles' shape, and it can be as large as 80% when the polar dielectric nanoparticles are spherical in shape and are in the dilute limit with the volume fraction f=0.01. Physically, there exists strong electromagnetic coupling between the surface phonon polariton mode of polar dielectrics plate and the localized surface phonon polariton mode around polar dielectric nanoparticles. The results provide alternative new freedom for regulating energy flow and heat rectification efficiency in the near field, and may be helpful for design of multiparameter adjustable thermal diodes.
  • Article Text

  • [1]
    Prod'homme H, Ordonez-Miranda J, Ezzahri Y, Drevillon J and Joulain K 2018 J. Quant. Spectrosc. Radiat. Transfer 210 52 doi: 10.1016/j.jqsrt.2018.02.005

    CrossRef Google Scholar

    [2]
    Ghanekar A, Tian Y P, Ricci M, Zhang S, Gregory O and Zheng Y 2018 Opt. Express 26 A209 doi: 10.1364/OE.26.00A209

    CrossRef Google Scholar

    [3]
    Iizuka H and Fan S H 2014 J. Quant. Spectrosc. Radiat. Transfer 148 156 doi: 10.1016/j.jqsrt.2014.07.007

    CrossRef Google Scholar

    [4]
    Xu G, Sun J, Mao H and Pan T 2019 J. Quant. Spectrosc. Radiat. Transfer 232 20 doi: 10.1016/j.jqsrt.2019.04.025

    CrossRef Google Scholar

    [5]
    Tang L and Francoeur M 2017 Opt. Express 25 A1043 doi: 10.1364/OE.25.0A1043

    CrossRef Google Scholar

    [6]
    Wang H, Hu S, Takahashi K, Zhang X, Takamatsu H and Chen J 2017 Nat. Commun. 8 15843 doi: 10.1038/ncomms15843

    CrossRef Google Scholar

    [7]
    Wang L P and Zhang Z M 2013 Nanoscale Microscale Thermophys. Eng. 17 337 doi: 10.1080/15567265.2013.776154

    CrossRef Google Scholar

    [8]
    Wang K Y and Gao L 2020 ES Energy & Environ. 7 12 doi: 10.30919/esee8c350

    CrossRef Google Scholar

    [9]
    Philippe B A and Svend-Age B 2014 Phys. Rev. Lett. 112 044301 doi: 10.1103/PhysRevLett.112.044301

    CrossRef Google Scholar

    [10]
    Lo W C, Wang L and Li B 2008 J. Phys. Soc. Jpn. 77 054402 doi: 10.1143/JPSJ.77.054402

    CrossRef Google Scholar

    [11]
    Lenert A, Bierman D M, Nam Y, Chan W R, Celanovic I, Soljacic M and Wang E N 2014 Nat. Nanotechnol. 9 126 doi: 10.1038/nnano.2013.286

    CrossRef Google Scholar

    [12]
    Challener W A, Peng C, Itagi A V, Karns D, Peng W, Peng Y, Yang X, Zhu X, Gokemeijer N J, Hsia Y T, Ju G, Rottmayer R E, Seigler M A and Gage E C 2009 Nat. Photon. 3 220 doi: 10.1038/nphoton.2009.26

    CrossRef Google Scholar

    [13]
    Ghanekar A, Ricci M, Tian Y P, Gregory O and Zheng Y 2018 Appl. Phys. Lett. 112 241104 doi: 10.1063/1.5037468

    CrossRef Google Scholar

    [14]
    Yang Y and Wang L P 2017 J. Quant. Spectrosc. Radiat. Transfer 197 68 doi: 10.1016/j.jqsrt.2016.06.013

    CrossRef Google Scholar

    [15]
    Chang C W, Okawa D, Majumdar A and Zettl A 2006 Science 314 1121 doi: 10.1126/science.1132898

    CrossRef Google Scholar

    [16]
    Jia S C, Fu Y, Su Y S and Ma Y G 2018 Opt. Lett. 43 5619 doi: 10.1364/OL.43.005619

    CrossRef Google Scholar

    [17]
    Kasali S O, Ordonez-Miranda J and Joulain K 2020 Int. J. Heat Mass Transfer 154 119739 doi: 10.1016/j.ijheatmasstransfer.2020.119739

    CrossRef Google Scholar

    [18]
    Whale M D and Cravalho E G 2002 IEEE Trans. Energy Convers. 17 130 doi: 10.1109/60.986450

    CrossRef Google Scholar

    [19]
    Laroche M R, C and Greffet J J 2006 J. Appl. Phys. 100 063704 doi: 10.1063/1.2234560

    CrossRef Google Scholar

    [20]
    Park K, Basu S, King W P and Zhang Z M 2008 J. Quant. Spectrosc. Radiat. Transfer 109 305 doi: 10.1016/j.jqsrt.2007.08.022

    CrossRef Google Scholar

    [21]
    Otey C R, Lau W T and Fan S 2010 Phys. Rev. Lett. 104 154301 doi: 10.1103/PhysRevLett.104.154301

    CrossRef Google Scholar

    [22]
    Wang M and Pan N 2008 Mater. Sci. Eng. R 63 1 doi: 10.1016/j.mser.2008.07.001

    CrossRef Google Scholar

    [23]
    Balazs A C, Emrick T and Russell T P 2006 Science 314 1107 doi: 10.1126/science.1130557

    CrossRef Google Scholar

    [24]
    Krokhin A A, Arriaga J, Gumen L N and Drachev V P 2016 Phys. Rev. B 93 075418 doi: 10.1103/PhysRevB.93.075418

    CrossRef Google Scholar

    [25]
    Perez-Rodriguez J E, Pirruccio G and Esquivel-Sirvent R 2019 Phys. Rev. Mater. 3 015201 doi: 10.1103/PhysRevMaterials.3.015201

    CrossRef Google Scholar

    [26]
    Kittel A, Wischnath U F, Welker J, Huth O, Rueting F and Biehs S A 2008 Appl. Phys. Lett. 93 193109 doi: 10.1063/1.3025140

    CrossRef Google Scholar

    [27]
    Worbes L, Hellmann D and Kittel A 2013 Phys. Rev. Lett. 110 134302 doi: 10.1103/PhysRevLett.110.134302

    CrossRef Google Scholar

    [28]
    Shen S, Mavrokefalos A, Sambegoro P and Chen G 2012 Appl. Phys. Lett. 100 233114 doi: 10.1063/1.4723713

    CrossRef Google Scholar

    [29]
    Guha B, Otey C, Poitras C B, Fan S and Lipson M 2012 Nano Lett. 12 4546 doi: 10.1021/nl301708e

    CrossRef Google Scholar

    [30]
    Zhou C, Zharig Y, Yi H and Qu L 2019 PhotonIcs & Electromagnetics Research Symposium-Spring Rome, Italy 17–20 June 2019 p 2652

    Google Scholar

    [31]
    Shen S, Narayanaswamy A and Chen G 2009 Nano Lett. 9 2909 doi: 10.1021/nl901208v

    CrossRef Google Scholar

    [32]
    Yazmin S E and Esquivel-Sirvent R 2017 Z. Naturforsch. A: Phys. Sci. 72 129 doi: 10.1515/zna-2016-0368

    CrossRef Google Scholar

    [33]
    Van Zwol P J, Ranno L and Chevrier J 2012 Phys. Rev. Lett. 108 234301 doi: 10.1103/PhysRevLett.108.234301

    CrossRef Google Scholar

    [34]
    Jordan T H 2015 Geophys. J. Int. 203 1343 doi: 10.1093/gji/ggv355

    CrossRef Google Scholar

    [35]
    Choy T C 2016 Effective Medium Theory Principles and Applications Oxford: Oxford Science Publications vol 2 p 240

    Google Scholar

    [36]
    Zhu L, Otey C R and Fan S 2013 Phys. Rev. B 88 184301 doi: 10.1103/PhysRevB.88.184301

    CrossRef Google Scholar

    [37]
    Gao L and Li Z 2003 J. Phys.: Condens. Matter 15 4397 doi: 10.1088/0953-8984/15/25/310

    CrossRef Google Scholar

    [38]
    Gao L, Wan J T K, Yu K W and Li Z Y 2000 J. Phys.: Condens. Matter 12 6825 doi: 10.1088/0953-8984/12/30/311

    CrossRef Google Scholar

    [39]
    Joulain K, Ezzahri Y, Drevillon J, Rousseau B and Meneses D D S 2015 Opt. Express 23 A1388 doi: 10.1364/OE.23.0A1388

    CrossRef Google Scholar

    [40]
    Xu G, Sun J, Mao H and Pan T 2018 J. Appl. Phys. 124 183104 doi: 10.1063/1.5053162

    CrossRef Google Scholar

Catalog

    Article views (389) PDF downloads (498) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return