Model Hamiltonian for the Quantum Anomalous Hall State in Iron-Halogenide
-
Abstract
We examine quantum anomalous Hall (QAH) insulators with intrinsic magnetism displaying quantized Hall conductance at zero magnetic fields. The spin-momentum locking of the topological edge stats promises QAH insulators with great potential in device applications in the field of spintronics. Here, we generalize Haldane's model on the honeycomb lattice to a more realistic two-orbital case without the artificial real-space complex hopping. Instead, we introduce an intraorbital coupling, stemming directly from the local spin-orbit coupling (SOC). Our model may be viewed as a generalization of the bismuthene -model for correlated -orbitals. It promises a large SOC gap, featuring a high operating temperature. This two-orbital model nicely explains the low-energy excitation and the topology of two-dimensional ferromagnetic iron-halogenides. Furthermore, we find that electronic correlations can drive the QAH states to a phase, in which every band carries a nonzero Chern number. Our work not only provides a realistic QAH model, but also generalizes the nontrivial band topology to correlated orbitals, which demonstrates an exciting topological phase transition driven by Coulomb repulsions. Both the model and the material candidates provide excellent platforms for future study of the interplay between electronic correlations and nontrivial band topology. -
-
References
[1] Klitzing K V, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494 doi: 10.1103/PhysRevLett.45.494[2] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 doi: 10.1103/RevModPhys.82.3045[3] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 doi: 10.1103/RevModPhys.83.1057[4] Thouless D J, Kohmoto M, Nightingale M P and den Nijs M 1982 Phys. Rev. Lett. 49 405 doi: 10.1103/PhysRevLett.49.405[5] Berry M V 1984 Proc. R. Soc. London A 392 45[6] Haldane F D M 1988 Phys. Rev. Lett. 61 2015 doi: 10.1103/PhysRevLett.61.2015[7] Po H C, Vishwanath A and Watanabe H 2017 Nat. Commun. 8 50 doi: 10.1038/s41467-017-00133-2[8] Watanabe H, Po H C and Vishwanath A 2018 Sci. Adv. 4 eaat8685 doi: 10.1126/sciadv.aat8685[9] Bradlyn B, Elcoro L, Cano J, Vergniory M G, Wang Z, Felser C, Aroyo M I and Bernevig B A 2017 Nature 547 298 doi: 10.1038/nature23268[10] Tang F, Po H C, Vishwanath A and Wan X 2019 Nature 566 486 doi: 10.1038/s41586-019-0937-5[11] Zhang T, Jiang Y, Song Z, Huang H, He Y, Fang Z, Weng H and Fang C 2019 Nature 566 475 doi: 10.1038/s41586-019-0944-6[12] Vergniory M G, Elcoro L, Felser C, Regnault N, Bernevig B A and Wang Z 2019 Nature 566 480 doi: 10.1038/s41586-019-0954-4[13] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802 doi: 10.1103/PhysRevLett.95.146802[14] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757 doi: 10.1126/science.1133734[15] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766 doi: 10.1126/science.1148047[16] Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schäfer J and Claessen R 2017 Science 357 287 doi: 10.1126/science.aai8142[17] Li G, Hanke W, Hankiewicz E M, Reis F, Schäfer J, Claessen R, Wu C and Thomale R 2018 Phys. Rev. B 98 165146 doi: 10.1103/PhysRevB.98.165146[18] Dominguez F, Scharf B, Li G, Schäfer J, Claessen R, Hanke W, Thomale R and Hankiewicz E M 2018 Phys. Rev. B 98 161407 doi: 10.1103/PhysRevB.98.161407[19] Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167 doi: 10.1126/science.1234414[20] Jiang G, Feng Y, Wu W, Li S, Bai Y, Li Y, Zhang Q, Gu L, Feng X, Zhang D, Song C, Wang L, Li W, Ma X C, Xue Q K, Wang Y and He K 2018 Chin. Phys. Lett. 35 076802 doi: 10.1088/0256-307X/35/7/076802[21] Guo Q, Wu Y, Xu L, Gong Y, Ou Y, Liu Y, Li L, Yan Y, Han G, Wang D, Wang L, Long S, Zhang B, Cao X, Yang S, Wang X, Huang Y, Liu T, Yu G, He K and Teng J 2020 Chin. Phys. Lett. 37 057301 doi: 10.1088/0256-307X/37/5/057301[22] Liu Q, Liu C X, Xu C, Qi X L and Zhang S C 2009 Phys. Rev. Lett. 102 156603 doi: 10.1103/PhysRevLett.102.156603[23] Zhu J J, Yao D X, Zhang S C and Chang K 2011 Phys. Rev. Lett. 106 097201 doi: 10.1103/PhysRevLett.106.097201[24] Tokura Y, Yasuda K and Tsukazaki A 2019 Nat. Rev. Phys. 1 1 doi: 10.1038/s42254-018-0014-2[25] Yu R, Zhang W, Zhang H J, Zhang S C, Dai X and Fang Z 2010 Science 329 61 doi: 10.1126/science.1187485[26] Zhang D, Shi M, Zhu T, Xing D, Zhang H and Wang J 2019 Phys. Rev. Lett. 122 206401 doi: 10.1103/PhysRevLett.122.206401[27] Otrokov M M, Klimovskikh I I, Bentmann H, Estyunin D, Zeugner A, Aliev Z S, Gaß S, Wolter A U B, Koroleva A V, Shikin A M, Blanco-Rey M, Hoffmann M, Rusinov I P, Vyazovskaya A Y, Eremeev S V, Koroteev Y M, Kuznetsov V M, Freyse F, Sánchez-Barriga J, Amiraslanov I R, Babanly M B, Mamedov N T, Abdullayev N A, Zverev V N, Alfonsov A, Kataev V, Büchner B, Schwier E F, Kumar S, Kimura A, Petaccia L, Di Santo G, Vidal R C, Schatz S, Kißner K, Ünzelmann M, Min C H, Moser S, Peixoto T R F, Reinert F, Ernst A, Echenique P M, Isaeva A and Chulkov E V 2019 Nature 576 416 doi: 10.1038/s41586-019-1840-9[28] Gong Y, Guo J, Li J, Zhu K, Liao M, Liu X, Zhang Q, Gu L, Tang L, Feng X, Zhang D, Li W, Song C, Wang L, Yu P, Chen X, Wang Y, Yao H, Duan W, Xu Y, Zhang S C, Ma X, Xue Q K and He K 2019 Chin. Phys. Lett. 36 076801 doi: 10.1088/0256-307X/36/7/076801[29] Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H and Zhang Y 2020 Science 367 895 doi: 10.1126/science.aax8156[30] Li J, Li Y, Du S, Wang Z, Gu B L, Zhang S C, He K, Duan W and Xu Y 2019 Sci. Adv. 5 eaaw5685 doi: 10.1126/sciadv.aaw5685[31] Zhang J, Wang D, Shi M, Zhu T, Zhang H and Wang J 2020 Chin. Phys. Lett. 37 077304 doi: 10.1088/0256-307X/37/7/077304[32] Pei C, Xia Y, Wu J, Zhao Y, Gao L, Ying T, Gao B, Li N, Yang W, Zhang D, Gou H, Chen Y, Hosono H, Li G and Qi Y 2020 Chin. Phys. Lett. 37 066401 doi: 10.1088/0256-307X/37/6/066401[33] Slater J C and Koster G F 1954 Phys. Rev. 94 1498 doi: 10.1103/PhysRev.94.1498[34] Zhang S H and Liu B G 2017 arXiv:1706.08943 [cond-mat.mes-hall][35] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 doi: 10.1103/PhysRevB.59.1758[36] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 doi: 10.1103/PhysRevLett.77.3865[37] Sancho M P L, Sancho J M L and Rubio J 1985 J. Phys. F 15 851 doi: 10.1088/0305-4608/15/4/009[38] Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847 doi: 10.1103/PhysRevB.56.12847[39] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685 doi: 10.1016/j.cpc.2007.11.016[40] Sun J, Zhong X, Cui W, Shi J, Hao J, Xu M and Li Y 2020 Phys. Chem. Chem. Phys. 22 3128 doi: 10.1039/d0cp90018d[41] Cable J W, Wilkinson M K, Wollan E O and Koehler W C 1962 Phys. Rev. 127 714 doi: 10.1103/PhysRev.127.714[42] Armbruster M, Ludwig T, Rotter H W, Thiele G and Oppermann H 3.0.CO;2-X" target="_blank">2000 Z. Anorg. Allg. Chem. 626 187 doi: 10.1002/SICI1521-3749200001626:1<187::AID-ZAAC187>3.0.CO;2-XCrossRef 2000 Z. Anorg. Allg. Chem. 626 187" target="_blank">Google Scholar
[43] Gregory N W 1951 J. Am. Chem. Soc. 73 472 doi: 10.1021/ja01145a511[44] Haastrup S, Strange M, Pandey M, Deilmann T, Schmidt P S, Hinsche N F, Gjerding M N, Torelli D, Larsen P M, Riis-Jensen A C, Gath J, Jacobsen K W, Mortensen J J, Olsen T and Thygesen K S 2018 2D Mater. 5 042002 doi: 10.1088/2053-1583/aacfc1[45] McGuire M A 2017 Crystals 7 121 doi: 10.3390/cryst7050121 -
Related Articles
[1] Jiawei Hu, Shiyu Zhu, Qianying Hu, Yunhao Wang, Chengmin Shen, Haitao Yang, Xiaoshan Zhu, Qing Huan, Yang Xu, Hong-Jun Gao. Visualizing the Local Twist Angle Variation within and between Domains of Twisted Bilayer Graphene [J]. Chin. Phys. Lett., 2024, 41(3): 037401. doi: 10.1088/0256-307X/41/3/037401 [2] Jia-Jun Ma, Zhen-Yu Wang, Shui-Gang Xu, Yu-Xiang Gao, Yu-Yang Zhang, Qing Dai, Xiao Lin, Shi-Xuan Du, Jindong Ren, Hong-Jun Gao. Local Density of States Modulated by Strain in Marginally Twisted Bilayer Graphene [J]. Chin. Phys. Lett., 2022, 39(4): 047403. doi: 10.1088/0256-307X/39/4/047403 [3] Xiao-Feng Li, Ruo-Xuan Sun, Su-Yun Wang, Xiao Li, Zhi-Bo Liu, Jian-Guo Tian. Recent Advances in Moiré Superlattice Structures of Twisted Bilayer and Multilayer Graphene [J]. Chin. Phys. Lett., 2022, 39(3): 037301. doi: 10.1088/0256-307X/39/3/037301 [4] Xu Zhang, Gaopei Pan, Yi Zhang, Jian Kang, Zi Yang Meng. Momentum Space Quantum Monte Carlo on Twisted Bilayer Graphene [J]. Chin. Phys. Lett., 2021, 38(7): 077305. doi: 10.1088/0256-307X/38/7/077305 [5] WANG Tao, GUO Qing, AO Zhi-Min, LIU Yan, WANG Wen-Bo, SHENG Kuang, YU Bin. The Tunable Bandgap of AB-Stacked Bilayer Graphene on SiO2 with H2O Molecule Adsorption [J]. Chin. Phys. Lett., 2011, 28(11): 117302. doi: 10.1088/0256-307X/28/11/117302 [6] LIU Yan, AO Zhi-Min, WANG Tao, WANG Wen-Bo, SHENG Kuang, YU Bin. Transformation from AA to AB-Stacked Bilayer Graphene on α−SiO2 under an Electric Field [J]. Chin. Phys. Lett., 2011, 28(8): 087303. doi: 10.1088/0256-307X/28/8/087303 [7] WANG Lin-Jun, CAO Gang, TU Tao, LI Hai-Ou, ZHOU Cheng, HAO Xiao-Jie, GUO Guang-Can, GUO Guo-Ping. Ground States and Excited States in a Tunable Graphene Quantum Dot [J]. Chin. Phys. Lett., 2011, 28(6): 067301. doi: 10.1088/0256-307X/28/6/067301 [8] LI Xiao-Wei. Heat Transport in Graphene Ferromagnet-Insulator-Superconductor Junctions [J]. Chin. Phys. Lett., 2011, 28(4): 047401. doi: 10.1088/0256-307X/28/4/047401 [9] OUYANG Fang-Ping, CHEN Li-Jian, XIAO Jin, ZHANG Hua. Electronic Properties of Bilayer Zigzag Graphene Nanoribbons: First Principles Study [J]. Chin. Phys. Lett., 2011, 28(4): 047304. doi: 10.1088/0256-307X/28/4/047304 [10] SHEN Yi-min, KAJI Hironori, HORII Fumitaka. An Analytical Expression of Magic Angle Spinning Nuclear Magnetic Resonance Free Induction Decay in Two-Site Exchange Problem [J]. Chin. Phys. Lett., 1998, 15(6): 453-454. -
Cited by
Periodical cited type(24)
1. Tian, Z.-Y., Li, S.-Y., Zhou, H.-T. et al. Moiré physics in two-dimensional materials: Novel quantum phases and electronic properties. Chinese Physics B, 2025, 34(2): 027301. DOI:10.1088/1674-1056/ad9e96 2. Yang, S., Chen, J., Liu, C.-F. et al. Evolution of flat bands in MoSe2/WSe2 moiré lattices: A study combining machine learning and band unfolding methods. Physical Review B, 2024, 110(23): 235410. DOI:10.1103/PhysRevB.110.235410 3. Xue, Y., Wang, Y., Jiang, Y. Novel States Induced by Superlattice Structures in Twisted Two-Dimensional Heterostructures | [超晶格结构在二维转角异质结中产生的新奇物态]. Zhenkong Kexue yu Jishu Xuebao/Journal of Vacuum Science and Technology, 2024, 44(4): 279-305. DOI:10.13922/j.cnki.cjvst.202310015 4. Wang, R., Song, Z. Flat Band and η-Pairing States in a One-Dimensional Moiré Hubbard Model. Chinese Physics Letters, 2024, 41(4): 047101. DOI:10.1088/0256-307X/41/4/047101 5. Lu, X., Xie, B., Yang, Y. et al. Magic Momenta and Three-Dimensional Landau Levels from a Three-Dimensional Graphite Moiré Superlattice. Physical Review Letters, 2024, 132(5): 056601. DOI:10.1103/PhysRevLett.132.056601 6. de Vries, F.K., Slizovskiy, S., Tomić, P. et al. Kagome Quantum Oscillations in Graphene Superlattices. Nano Letters, 2024, 24(2): 601-606. DOI:10.1021/acs.nanolett.3c03524 7. Yang, W., Zhang, G. Hofstadter butterfly in graphene. Encyclopedia of Condensed Matter Physics, 2024. DOI:10.1016/B978-0-323-90800-9.00054-8 8. Huang, Y.. Topological Floquet flat bands in irradiated alternating twist multilayer graphene. Physical Review B, 2023, 108(16): 165139. DOI:10.1103/PhysRevB.108.165139 9. Xie, B., Liu, J. Lattice distortions, moire phonons, and relaxed electronic band structures in magic-angle twisted bilayer graphene. Physical Review B, 2023, 108(9): 094115. DOI:10.1103/PhysRevB.108.094115 10. Herzog-Arbeitman, J., Song, Z.-D., Elcoro, L. et al. Hofstadter Topology with Real Space Invariants and Reentrant Projective Symmetries. Physical Review Letters, 2023, 130(23): 236601. DOI:10.1103/PhysRevLett.130.236601 11. Wang, M., Shan, W., Wang, H. Unique Electronic Properties of the Twisted Bilayer Graphene. Physica Status Solidi (B) Basic Research, 2023, 260(5): 2200344. DOI:10.1002/pssb.202200344 12. Zhang, S., Xie, B., Wu, Q. et al. Chiral Decomposition of Twisted Graphene Multilayers with Arbitrary Stacking. Nano Letters, 2023, 23(7): 2921-2926. DOI:10.1021/acs.nanolett.3c00275 13. Zhang, S.-H., Xie, B., Peng, R. et al. Novel electrical properties of moiré graphene systems | [莫尔石墨烯体系的新奇电学性质]. Wuli Xuebao/Acta Physica Sinica, 2023, 72(6): 067302. DOI:10.7498/aps.72.20230120 14. Wu, F., Li, L., Xu, Q. et al. Coupled Ferroelectricity and Correlated States in a Twisted Quadrilayer MoS2 Moiré Superlattice. Chinese Physics Letters, 2023, 40(4): 047303. DOI:10.1088/0256-307X/40/4/047303 15. Liu, L., Zhang, S., Chu, Y. et al. Isospin competitions and valley polarized correlated insulators in twisted double bilayer graphene. Nature Communications, 2022, 13(1): 3292. DOI:10.1038/s41467-022-30998-x 16. Liu, X., Peng, R., Sun, Z. et al. Moiré Phonons in Magic-Angle Twisted Bilayer Graphene. Nano Letters, 2022, 22(19): 7791-7797. DOI:10.1021/acs.nanolett.2c02010 17. Zhan, Z., Zhang, Y.-L., Yuan, S.-J. Lattice relaxation and substrate effects of graphene moiré superlattice | [石墨烯莫尔超晶格的晶格弛豫与衬底效应]. Wuli Xuebao/Acta Physica Sinica, 2022, 71(18): 187302. DOI:10.7498/aps.71.20220872 18. Chu, Y., Liu, L., Ji, Y. et al. Observation of quadratic magnetoresistance in twisted double bilayer graphene. Chinese Physics B, 2022, 31(10): 107201. DOI:10.1088/1674-1056/ac6866 19. Chen, R., Wang, Y.-F., Wang, Y.-X. et al. First-principles study of transition metal atoms X (X = Mn, Tc, Re) doped two-dimensional WS2 materials | [过渡金属原子 X (X = Mn, Tc, Re) 掺杂二维 WS2 第一性原理研究]. Wuli Xuebao/Acta Physica Sinica, 2022, 71(12): 127301. DOI:10.7498/aps.71.20212439 20. Liu, C., Wang, J. Spectroscopic Evidence for Electron Correlations in Epitaxial Bilayer Graphene with Interface-Reconstructed Superlattice Potentials. Chinese Physics Letters, 2022, 39(7): 077301. DOI:10.1088/0256-307X/39/7/077301 21. Ma, J.-J., Wang, Z.-Y., Xu, S.-G. et al. Local Density of States Modulated by Strain in Marginally Twisted Bilayer Graphene. Chinese Physics Letters, 2022, 39(4): 047403. DOI:10.1088/0256-307X/39/4/047403 22. Li, X.-F., Sun, R.-X., Wang, S.-Y. et al. Recent Advances in Moiré Superlattice Structures of Twisted Bilayer and Multilayer Graphene. Chinese Physics Letters, 2022, 39(3): 037301. DOI:10.1088/0256-307X/39/3/037301 23. Zhang, X., Pan, G., Zhang, Y. et al. Momentum Space Quantum Monte Carlo on Twisted Bilayer Graphene. Chinese Physics Letters, 2021, 38(7): 077305. DOI:10.1088/0256-307X/38/7/077305 24. Ji, Y.-R., Chu, Y.-B., Xian, L.-D. et al. From magic angle twisted bilayer graphene to moiré superlattice quantum simulator | [从"魔角"石墨烯到摩尔超晶格量子模拟器]. Wuli Xuebao/Acta Physica Sinica, 2021, 70(11): 118101. DOI:10.7498/aps.70.20210476 Other cited types(0)