Model Hamiltonian for the Quantum Anomalous Hall State in Iron-Halogenide

Funds: Supported by the National Key R&D Program of China (Grant No. 2017YFE0131300), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA18010000), the Starting Grant of ShanghaiTech University, and the Program for Professor of Special Appointment (Shanghai Eastern Scholar).
  • Received Date: June 13, 2020
  • Published Date: August 31, 2020
  • We examine quantum anomalous Hall (QAH) insulators with intrinsic magnetism displaying quantized Hall conductance at zero magnetic fields. The spin-momentum locking of the topological edge stats promises QAH insulators with great potential in device applications in the field of spintronics. Here, we generalize Haldane's model on the honeycomb lattice to a more realistic two-orbital case without the artificial real-space complex hopping. Instead, we introduce an intraorbital coupling, stemming directly from the local spin-orbit coupling (SOC). Our dxy/dx2y2 model may be viewed as a generalization of the bismuthene px/py-model for correlated d-orbitals. It promises a large SOC gap, featuring a high operating temperature. This two-orbital model nicely explains the low-energy excitation and the topology of two-dimensional ferromagnetic iron-halogenides. Furthermore, we find that electronic correlations can drive the QAH states to a c=0 phase, in which every band carries a nonzero Chern number. Our work not only provides a realistic QAH model, but also generalizes the nontrivial band topology to correlated orbitals, which demonstrates an exciting topological phase transition driven by Coulomb repulsions. Both the model and the material candidates provide excellent platforms for future study of the interplay between electronic correlations and nontrivial band topology.
  • Article Text

  • [1]
    Klitzing K V, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494 doi: 10.1103/PhysRevLett.45.494

    CrossRef Google Scholar

    [2]
    Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 doi: 10.1103/RevModPhys.82.3045

    CrossRef Google Scholar

    [3]
    Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 doi: 10.1103/RevModPhys.83.1057

    CrossRef Google Scholar

    [4]
    Thouless D J, Kohmoto M, Nightingale M P and den Nijs M 1982 Phys. Rev. Lett. 49 405 doi: 10.1103/PhysRevLett.49.405

    CrossRef Google Scholar

    [5]
    Berry M V 1984 Proc. R. Soc. London A 392 45

    Google Scholar

    [6]
    Haldane F D M 1988 Phys. Rev. Lett. 61 2015 doi: 10.1103/PhysRevLett.61.2015

    CrossRef Google Scholar

    [7]
    Po H C, Vishwanath A and Watanabe H 2017 Nat. Commun. 8 50 doi: 10.1038/s41467-017-00133-2

    CrossRef Google Scholar

    [8]
    Watanabe H, Po H C and Vishwanath A 2018 Sci. Adv. 4 eaat8685 doi: 10.1126/sciadv.aat8685

    CrossRef Google Scholar

    [9]
    Bradlyn B, Elcoro L, Cano J, Vergniory M G, Wang Z, Felser C, Aroyo M I and Bernevig B A 2017 Nature 547 298 doi: 10.1038/nature23268

    CrossRef Google Scholar

    [10]
    Tang F, Po H C, Vishwanath A and Wan X 2019 Nature 566 486 doi: 10.1038/s41586-019-0937-5

    CrossRef Google Scholar

    [11]
    Zhang T, Jiang Y, Song Z, Huang H, He Y, Fang Z, Weng H and Fang C 2019 Nature 566 475 doi: 10.1038/s41586-019-0944-6

    CrossRef Google Scholar

    [12]
    Vergniory M G, Elcoro L, Felser C, Regnault N, Bernevig B A and Wang Z 2019 Nature 566 480 doi: 10.1038/s41586-019-0954-4

    CrossRef Google Scholar

    [13]
    Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802 doi: 10.1103/PhysRevLett.95.146802

    CrossRef Google Scholar

    [14]
    Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757 doi: 10.1126/science.1133734

    CrossRef Google Scholar

    [15]
    König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766 doi: 10.1126/science.1148047

    CrossRef Google Scholar

    [16]
    Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schäfer J and Claessen R 2017 Science 357 287 doi: 10.1126/science.aai8142

    CrossRef Google Scholar

    [17]
    Li G, Hanke W, Hankiewicz E M, Reis F, Schäfer J, Claessen R, Wu C and Thomale R 2018 Phys. Rev. B 98 165146 doi: 10.1103/PhysRevB.98.165146

    CrossRef Google Scholar

    [18]
    Dominguez F, Scharf B, Li G, Schäfer J, Claessen R, Hanke W, Thomale R and Hankiewicz E M 2018 Phys. Rev. B 98 161407 doi: 10.1103/PhysRevB.98.161407

    CrossRef Google Scholar

    [19]
    Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167 doi: 10.1126/science.1234414

    CrossRef Google Scholar

    [20]
    Jiang G, Feng Y, Wu W, Li S, Bai Y, Li Y, Zhang Q, Gu L, Feng X, Zhang D, Song C, Wang L, Li W, Ma X C, Xue Q K, Wang Y and He K 2018 Chin. Phys. Lett. 35 076802 doi: 10.1088/0256-307X/35/7/076802

    CrossRef Google Scholar

    [21]
    Guo Q, Wu Y, Xu L, Gong Y, Ou Y, Liu Y, Li L, Yan Y, Han G, Wang D, Wang L, Long S, Zhang B, Cao X, Yang S, Wang X, Huang Y, Liu T, Yu G, He K and Teng J 2020 Chin. Phys. Lett. 37 057301 doi: 10.1088/0256-307X/37/5/057301

    CrossRef Google Scholar

    [22]
    Liu Q, Liu C X, Xu C, Qi X L and Zhang S C 2009 Phys. Rev. Lett. 102 156603 doi: 10.1103/PhysRevLett.102.156603

    CrossRef Google Scholar

    [23]
    Zhu J J, Yao D X, Zhang S C and Chang K 2011 Phys. Rev. Lett. 106 097201 doi: 10.1103/PhysRevLett.106.097201

    CrossRef Google Scholar

    [24]
    Tokura Y, Yasuda K and Tsukazaki A 2019 Nat. Rev. Phys. 1 1 doi: 10.1038/s42254-018-0014-2

    CrossRef Google Scholar

    [25]
    Yu R, Zhang W, Zhang H J, Zhang S C, Dai X and Fang Z 2010 Science 329 61 doi: 10.1126/science.1187485

    CrossRef Google Scholar

    [26]
    Zhang D, Shi M, Zhu T, Xing D, Zhang H and Wang J 2019 Phys. Rev. Lett. 122 206401 doi: 10.1103/PhysRevLett.122.206401

    CrossRef Google Scholar

    [27]
    Otrokov M M, Klimovskikh I I, Bentmann H, Estyunin D, Zeugner A, Aliev Z S, Gaß S, Wolter A U B, Koroleva A V, Shikin A M, Blanco-Rey M, Hoffmann M, Rusinov I P, Vyazovskaya A Y, Eremeev S V, Koroteev Y M, Kuznetsov V M, Freyse F, Sánchez-Barriga J, Amiraslanov I R, Babanly M B, Mamedov N T, Abdullayev N A, Zverev V N, Alfonsov A, Kataev V, Büchner B, Schwier E F, Kumar S, Kimura A, Petaccia L, Di Santo G, Vidal R C, Schatz S, Kißner K, Ünzelmann M, Min C H, Moser S, Peixoto T R F, Reinert F, Ernst A, Echenique P M, Isaeva A and Chulkov E V 2019 Nature 576 416 doi: 10.1038/s41586-019-1840-9

    CrossRef Google Scholar

    [28]
    Gong Y, Guo J, Li J, Zhu K, Liao M, Liu X, Zhang Q, Gu L, Tang L, Feng X, Zhang D, Li W, Song C, Wang L, Yu P, Chen X, Wang Y, Yao H, Duan W, Xu Y, Zhang S C, Ma X, Xue Q K and He K 2019 Chin. Phys. Lett. 36 076801 doi: 10.1088/0256-307X/36/7/076801

    CrossRef Google Scholar

    [29]
    Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H and Zhang Y 2020 Science 367 895 doi: 10.1126/science.aax8156

    CrossRef Google Scholar

    [30]
    Li J, Li Y, Du S, Wang Z, Gu B L, Zhang S C, He K, Duan W and Xu Y 2019 Sci. Adv. 5 eaaw5685 doi: 10.1126/sciadv.aaw5685

    CrossRef Google Scholar

    [31]
    Zhang J, Wang D, Shi M, Zhu T, Zhang H and Wang J 2020 Chin. Phys. Lett. 37 077304 doi: 10.1088/0256-307X/37/7/077304

    CrossRef Google Scholar

    [32]
    Pei C, Xia Y, Wu J, Zhao Y, Gao L, Ying T, Gao B, Li N, Yang W, Zhang D, Gou H, Chen Y, Hosono H, Li G and Qi Y 2020 Chin. Phys. Lett. 37 066401 doi: 10.1088/0256-307X/37/6/066401

    CrossRef Google Scholar

    [33]
    Slater J C and Koster G F 1954 Phys. Rev. 94 1498 doi: 10.1103/PhysRev.94.1498

    CrossRef Google Scholar

    [34]
    Zhang S H and Liu B G 2017 arXiv:1706.08943 [cond-mat.mes-hall]

    Google Scholar

    [35]
    Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 doi: 10.1103/PhysRevB.59.1758

    CrossRef Google Scholar

    [36]
    Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 doi: 10.1103/PhysRevLett.77.3865

    CrossRef Google Scholar

    [37]
    Sancho M P L, Sancho J M L and Rubio J 1985 J. Phys. F 15 851 doi: 10.1088/0305-4608/15/4/009

    CrossRef Google Scholar

    [38]
    Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847 doi: 10.1103/PhysRevB.56.12847

    CrossRef Google Scholar

    [39]
    Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685 doi: 10.1016/j.cpc.2007.11.016

    CrossRef Google Scholar

    [40]
    Sun J, Zhong X, Cui W, Shi J, Hao J, Xu M and Li Y 2020 Phys. Chem. Chem. Phys. 22 3128 doi: 10.1039/d0cp90018d

    CrossRef Google Scholar

    [41]
    Cable J W, Wilkinson M K, Wollan E O and Koehler W C 1962 Phys. Rev. 127 714 doi: 10.1103/PhysRev.127.714

    CrossRef Google Scholar

    [42]
    Armbruster M, Ludwig T, Rotter H W, Thiele G and Oppermann H 3.0.CO;2-X" target="_blank">2000 Z. Anorg. Allg. Chem. 626 187 doi: 10.1002/SICI1521-3749200001626:1<187::AID-ZAAC187>3.0.CO;2-X

    CrossRef 2000 Z. Anorg. Allg. Chem. 626 187" target="_blank">Google Scholar

    [43]
    Gregory N W 1951 J. Am. Chem. Soc. 73 472 doi: 10.1021/ja01145a511

    CrossRef Google Scholar

    [44]
    Haastrup S, Strange M, Pandey M, Deilmann T, Schmidt P S, Hinsche N F, Gjerding M N, Torelli D, Larsen P M, Riis-Jensen A C, Gath J, Jacobsen K W, Mortensen J J, Olsen T and Thygesen K S 2018 2D Mater. 5 042002 doi: 10.1088/2053-1583/aacfc1

    CrossRef Google Scholar

    [45]
    McGuire M A 2017 Crystals 7 121 doi: 10.3390/cryst7050121

    CrossRef Google Scholar

  • Related Articles

    [1]Jiawei Hu, Shiyu Zhu, Qianying Hu, Yunhao Wang, Chengmin Shen, Haitao Yang, Xiaoshan Zhu, Qing Huan, Yang Xu, Hong-Jun Gao. Visualizing the Local Twist Angle Variation within and between Domains of Twisted Bilayer Graphene [J]. Chin. Phys. Lett., 2024, 41(3): 037401. doi: 10.1088/0256-307X/41/3/037401
    [2]Jia-Jun Ma, Zhen-Yu Wang, Shui-Gang Xu, Yu-Xiang Gao, Yu-Yang Zhang, Qing Dai, Xiao Lin, Shi-Xuan Du, Jindong Ren, Hong-Jun Gao. Local Density of States Modulated by Strain in Marginally Twisted Bilayer Graphene [J]. Chin. Phys. Lett., 2022, 39(4): 047403. doi: 10.1088/0256-307X/39/4/047403
    [3]Xiao-Feng Li, Ruo-Xuan Sun, Su-Yun Wang, Xiao Li, Zhi-Bo Liu, Jian-Guo Tian. Recent Advances in Moiré Superlattice Structures of Twisted Bilayer and Multilayer Graphene [J]. Chin. Phys. Lett., 2022, 39(3): 037301. doi: 10.1088/0256-307X/39/3/037301
    [4]Xu Zhang, Gaopei Pan, Yi Zhang, Jian Kang, Zi Yang Meng. Momentum Space Quantum Monte Carlo on Twisted Bilayer Graphene [J]. Chin. Phys. Lett., 2021, 38(7): 077305. doi: 10.1088/0256-307X/38/7/077305
    [5]WANG Tao, GUO Qing, AO Zhi-Min, LIU Yan, WANG Wen-Bo, SHENG Kuang, YU Bin. The Tunable Bandgap of AB-Stacked Bilayer Graphene on SiO2 with H2O Molecule Adsorption [J]. Chin. Phys. Lett., 2011, 28(11): 117302. doi: 10.1088/0256-307X/28/11/117302
    [6]LIU Yan, AO Zhi-Min, WANG Tao, WANG Wen-Bo, SHENG Kuang, YU Bin. Transformation from AA to AB-Stacked Bilayer Graphene on α−SiO2 under an Electric Field [J]. Chin. Phys. Lett., 2011, 28(8): 087303. doi: 10.1088/0256-307X/28/8/087303
    [7]WANG Lin-Jun, CAO Gang, TU Tao, LI Hai-Ou, ZHOU Cheng, HAO Xiao-Jie, GUO Guang-Can, GUO Guo-Ping. Ground States and Excited States in a Tunable Graphene Quantum Dot [J]. Chin. Phys. Lett., 2011, 28(6): 067301. doi: 10.1088/0256-307X/28/6/067301
    [8]LI Xiao-Wei. Heat Transport in Graphene Ferromagnet-Insulator-Superconductor Junctions [J]. Chin. Phys. Lett., 2011, 28(4): 047401. doi: 10.1088/0256-307X/28/4/047401
    [9]OUYANG Fang-Ping, CHEN Li-Jian, XIAO Jin, ZHANG Hua. Electronic Properties of Bilayer Zigzag Graphene Nanoribbons: First Principles Study [J]. Chin. Phys. Lett., 2011, 28(4): 047304. doi: 10.1088/0256-307X/28/4/047304
    [10]SHEN Yi-min, KAJI Hironori, HORII Fumitaka. An Analytical Expression of Magic Angle Spinning Nuclear Magnetic Resonance Free Induction Decay in Two-Site Exchange Problem [J]. Chin. Phys. Lett., 1998, 15(6): 453-454.
  • Cited by

    Periodical cited type(24)

    1. Tian, Z.-Y., Li, S.-Y., Zhou, H.-T. et al. Moiré physics in two-dimensional materials: Novel quantum phases and electronic properties. Chinese Physics B, 2025, 34(2): 027301. DOI:10.1088/1674-1056/ad9e96
    2. Yang, S., Chen, J., Liu, C.-F. et al. Evolution of flat bands in MoSe2/WSe2 moiré lattices: A study combining machine learning and band unfolding methods. Physical Review B, 2024, 110(23): 235410. DOI:10.1103/PhysRevB.110.235410
    3. Xue, Y., Wang, Y., Jiang, Y. Novel States Induced by Superlattice Structures in Twisted Two-Dimensional Heterostructures | [超晶格结构在二维转角异质结中产生的新奇物态]. Zhenkong Kexue yu Jishu Xuebao/Journal of Vacuum Science and Technology, 2024, 44(4): 279-305. DOI:10.13922/j.cnki.cjvst.202310015
    4. Wang, R., Song, Z. Flat Band and η-Pairing States in a One-Dimensional Moiré Hubbard Model. Chinese Physics Letters, 2024, 41(4): 047101. DOI:10.1088/0256-307X/41/4/047101
    5. Lu, X., Xie, B., Yang, Y. et al. Magic Momenta and Three-Dimensional Landau Levels from a Three-Dimensional Graphite Moiré Superlattice. Physical Review Letters, 2024, 132(5): 056601. DOI:10.1103/PhysRevLett.132.056601
    6. de Vries, F.K., Slizovskiy, S., Tomić, P. et al. Kagome Quantum Oscillations in Graphene Superlattices. Nano Letters, 2024, 24(2): 601-606. DOI:10.1021/acs.nanolett.3c03524
    7. Yang, W., Zhang, G. Hofstadter butterfly in graphene. Encyclopedia of Condensed Matter Physics, 2024. DOI:10.1016/B978-0-323-90800-9.00054-8
    8. Huang, Y.. Topological Floquet flat bands in irradiated alternating twist multilayer graphene. Physical Review B, 2023, 108(16): 165139. DOI:10.1103/PhysRevB.108.165139
    9. Xie, B., Liu, J. Lattice distortions, moire phonons, and relaxed electronic band structures in magic-angle twisted bilayer graphene. Physical Review B, 2023, 108(9): 094115. DOI:10.1103/PhysRevB.108.094115
    10. Herzog-Arbeitman, J., Song, Z.-D., Elcoro, L. et al. Hofstadter Topology with Real Space Invariants and Reentrant Projective Symmetries. Physical Review Letters, 2023, 130(23): 236601. DOI:10.1103/PhysRevLett.130.236601
    11. Wang, M., Shan, W., Wang, H. Unique Electronic Properties of the Twisted Bilayer Graphene. Physica Status Solidi (B) Basic Research, 2023, 260(5): 2200344. DOI:10.1002/pssb.202200344
    12. Zhang, S., Xie, B., Wu, Q. et al. Chiral Decomposition of Twisted Graphene Multilayers with Arbitrary Stacking. Nano Letters, 2023, 23(7): 2921-2926. DOI:10.1021/acs.nanolett.3c00275
    13. Zhang, S.-H., Xie, B., Peng, R. et al. Novel electrical properties of moiré graphene systems | [莫尔石墨烯体系的新奇电学性质]. Wuli Xuebao/Acta Physica Sinica, 2023, 72(6): 067302. DOI:10.7498/aps.72.20230120
    14. Wu, F., Li, L., Xu, Q. et al. Coupled Ferroelectricity and Correlated States in a Twisted Quadrilayer MoS2 Moiré Superlattice. Chinese Physics Letters, 2023, 40(4): 047303. DOI:10.1088/0256-307X/40/4/047303
    15. Liu, L., Zhang, S., Chu, Y. et al. Isospin competitions and valley polarized correlated insulators in twisted double bilayer graphene. Nature Communications, 2022, 13(1): 3292. DOI:10.1038/s41467-022-30998-x
    16. Liu, X., Peng, R., Sun, Z. et al. Moiré Phonons in Magic-Angle Twisted Bilayer Graphene. Nano Letters, 2022, 22(19): 7791-7797. DOI:10.1021/acs.nanolett.2c02010
    17. Zhan, Z., Zhang, Y.-L., Yuan, S.-J. Lattice relaxation and substrate effects of graphene moiré superlattice | [石墨烯莫尔超晶格的晶格弛豫与衬底效应]. Wuli Xuebao/Acta Physica Sinica, 2022, 71(18): 187302. DOI:10.7498/aps.71.20220872
    18. Chu, Y., Liu, L., Ji, Y. et al. Observation of quadratic magnetoresistance in twisted double bilayer graphene. Chinese Physics B, 2022, 31(10): 107201. DOI:10.1088/1674-1056/ac6866
    19. Chen, R., Wang, Y.-F., Wang, Y.-X. et al. First-principles study of transition metal atoms X (X = Mn, Tc, Re) doped two-dimensional WS2 materials | [过渡金属原子 X (X = Mn, Tc, Re) 掺杂二维 WS2 第一性原理研究]. Wuli Xuebao/Acta Physica Sinica, 2022, 71(12): 127301. DOI:10.7498/aps.71.20212439
    20. Liu, C., Wang, J. Spectroscopic Evidence for Electron Correlations in Epitaxial Bilayer Graphene with Interface-Reconstructed Superlattice Potentials. Chinese Physics Letters, 2022, 39(7): 077301. DOI:10.1088/0256-307X/39/7/077301
    21. Ma, J.-J., Wang, Z.-Y., Xu, S.-G. et al. Local Density of States Modulated by Strain in Marginally Twisted Bilayer Graphene. Chinese Physics Letters, 2022, 39(4): 047403. DOI:10.1088/0256-307X/39/4/047403
    22. Li, X.-F., Sun, R.-X., Wang, S.-Y. et al. Recent Advances in Moiré Superlattice Structures of Twisted Bilayer and Multilayer Graphene. Chinese Physics Letters, 2022, 39(3): 037301. DOI:10.1088/0256-307X/39/3/037301
    23. Zhang, X., Pan, G., Zhang, Y. et al. Momentum Space Quantum Monte Carlo on Twisted Bilayer Graphene. Chinese Physics Letters, 2021, 38(7): 077305. DOI:10.1088/0256-307X/38/7/077305
    24. Ji, Y.-R., Chu, Y.-B., Xian, L.-D. et al. From magic angle twisted bilayer graphene to moiré superlattice quantum simulator | [从"魔角"石墨烯到摩尔超晶格量子模拟器]. Wuli Xuebao/Acta Physica Sinica, 2021, 70(11): 118101. DOI:10.7498/aps.70.20210476

    Other cited types(0)

Catalog

    Article views (1130) PDF downloads (1210) Cited by(24)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return