[1] | Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 | The rise of graphene
[2] | Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 | The electronic properties of graphene
[3] | Pumera M 2009 Chem. Rec. 9 211 | Electrochemistry of graphene: new horizons for sensing and energy storage
[4] | Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M and Ahn J H 2009 Nature 457 706 | Large-scale pattern growth of graphene films for stretchable transparent electrodes
[5] | Zhao J, Liu H, Yu Z, Quhe R, Zhou S, Wang Y, Liu C C, Zhong H, Han N, Lu J, Yao Y and Wu K 2016 Prog. Mater. Sci. 83 24 | Rise of silicene: A competitive 2D material
[6] | Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L and Wu K 2012 Nano Lett. 12 3507 | Evidence of Silicene in Honeycomb Structures of Silicon on Ag(111)
[7] | Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y and Wu K 2012 Phys. Rev. Lett. 109 056804 | Evidence for Dirac Fermions in a Honeycomb Lattice Based on Silicon
[8] | Chen L, Li H, Feng B, Ding Z, Qiu J, Cheng P, Wu K and Meng S 2013 Phys. Rev. Lett. 110 085504 | Spontaneous Symmetry Breaking and Dynamic Phase Transition in Monolayer Silicene
[9] | Sheng S, Ma R, Wu J B, Li W, Kong L, Cong X, Cao D, Hu W, Gou J, Luo J W, Cheng P, Tan P H, Jiang Y, Chen L and Wu K 2018 Nano Lett. 18 2937 | The Pentagonal Nature of Self-Assembled Silicon Chains and Magic Clusters on Ag(110)
[10] | Li L, Lu S Z, Pan J, Qin Z, Wang Y Q, Wang Y, Cao G Y, Du S X and Gao H J 2014 Adv. Mater. 26 4820 | Buckled Germanene Formation on Pt(111)
[11] | Dávila M E, Xian L, Cahangirov S, Rubio A and Le Lay G 2014 New J. Phys. 16 095002 | Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene
[12] | Derivaz M, Dentel D, Stephan R, Hanf M C, Mehdaoui A, Sonnet P and Pirri C 2015 Nano Lett. 15 2510 | Continuous Germanene Layer on Al(111)
[13] | Gou J, Zhong Q, Sheng S, Li W, Cheng P, Li H, Chen L and Wu K 2016 2D Mater. 3 045005 | Strained monolayer germanene with 1 × 1 lattice on Sb(111)
[14] | Lin C H, Huang A, Pai L, Chen W, Chen T Y, Chang T R, Yukawa R, Cheng C M, Mou C Y, Matsuda I, Chiang T C, Jeng H T and Tang S J 2018 Phys. Rev. Mater. 2 024003 | Single-layer dual germanene phases on Ag(111)
[15] | Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C and Jia J F 2015 Nat. Mater. 14 1020 | Epitaxial growth of two-dimensional stanene
[16] | Gou J, Kong L, Li H, Zhong Q, Li W, Cheng P, Chen L and Wu K 2017 Phys. Rev. Mater. 1 054004 | Strain-induced band engineering in monolayer stanene on Sb(111)
[17] | Yuhara J, Fujii Y, Nishino K, Isobe N, Nakatake M, Xian L, Rubio A and Le Lay G 2018 2D Mater. 5 025002 | Large area planar stanene epitaxially grown on Ag(1 1 1)
[18] | Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L and Wu K 2016 Nat. Chem. 8 563 | Experimental realization of two-dimensional boron sheets
[19] | Mannix A J, Zhou X F, Kiraly B, Wood J D, Alduein D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C and Guisinger N P 2015 Science 350 1513 | Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs
[20] | Zhang Z H, Mannix A J, Hu Z L, Kiraly B, Guisinger N P, Hersam M C and Yakobson B I 2016 Nano Lett. 16 6622 | Substrate-Induced Nanoscale Undulations of Borophene on Silver
[21] | Zhong Q, Kong L, Gou J, Li W, Sheng S, Yang S, Cheng P, Li H and Wu K 2017 Phys. Rev. Mater. 1 021001(R) | Synthesis of borophene nanoribbons on Ag(110) surface
[22] | Zhong Q, Zhang J, Cheng P, Feng B, Li W, Sheng S, Li H, Meng S, Chen L and Wu K 2017 J. Phys.: Condens. Matter 29 095002 | Metastable phases of 2D boron sheets on Ag(1 1 1)
[23] | Li W, Kong L, Chen C, Gou J, Sheng S, Zhang W, Li H, Chen L, Cheng P and Wu K 2018 Sci. Bull. 63 282 | Experimental realization of honeycomb borophene
[24] | Kong L, Wu K and Chen L 2018 Front. Phys. 13 138105 | Recent progress on borophene: Growth and structures
[25] | Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS Nano 8 4033 | Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility
[26] | Nilges T, Schmidt P and Weihrich R 2018 Phosphorus: The Allotropes Stability Synthesis and Selected Applications in Encyclopedia of Inorganic and Bioinorganic Chemistry (New York: American Cancer Society) |
[27] | Hultgren R, Gingrich N S and Warren B E 1935 J. Chem. Phys. 3 351 | The Atomic Distribution in Red and Black Phosphorus and the Crystal Structure of Black Phosphorus
[28] | Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372 | Black phosphorus field-effect transistors
[29] | Zhang C D, Lian J C, Yi W, Jiang Y H, Liu L W, Hu H, Xiao W D, Du S X, Sun L L and Gao H J 2009 J. Phys. Chem. C 113 18823 | Surface Structures of Black Phosphorus Investigated with Scanning Tunneling Microscopy
[30] | Liang L, Wang J, Lin W, Sumpter B G, Meunier V and Pan M 2014 Nano Lett. 14 6400 | Electronic Bandgap and Edge Reconstruction in Phosphorene Materials
[31] | Liu H, Du Y, Deng Y and Ye P D 2015 Chem. Soc. Rev. 44 2732 | Semiconducting black phosphorus: synthesis, transport properties and electronic applications
[32] | Zhu Z and Tománek D 2014 Phys. Rev. Lett. 112 176802 | Semiconducting Layered Blue Phosphorus: A Computational Study
[33] | Aierken Y, Çakır D, Sevik C and Peeters F M 2015 Phys. Rev. B 92 081408(R) | Thermal properties of black and blue phosphorenes from a first-principles quasiharmonic approach
[34] | Ghosh B, Nahas S, Bhowmick S and Agarwal A 2015 Phys. Rev. B 91 115433 | Electric field induced gap modification in ultrathin blue phosphorus
[35] | Xie J, Si M S, Yang D Z, Zhang Z Y and Xue D S 2014 J. Appl. Phys. 116 073704 | A theoretical study of blue phosphorene nanoribbons based on first-principles calculations
[36] | Zhu Z, Guan J, Liu D and Tománek D 2015 ACS Nano 9 8284 | Designing Isoelectronic Counterparts to Layered Group V Semiconductors
[37] | Zhang J L, Zhao S, Han C, Wang Z, Zhong S, Sun S, Guo R, Zhou X, Gu C D, Yuan K D, Li Z and Chen W 2016 Nano Lett. 16 4903 | Epitaxial Growth of Single Layer Blue Phosphorus: A New Phase of Two-Dimensional Phosphorus
[38] | Xu J P, Zhang J Q, Tian H, Xu H, Ho W and Xie M 2017 Phys. Rev. Mater. 1 061002(R) | One-dimensional phosphorus chain and two-dimensional blue phosphorene grown on Au(111) by molecular-beam epitaxy
[39] | Zhang W, Enriquez H, Tong Y, Bendounan A, Kara A, Seitsonen A P, Mayne A J, Dujardin G and Oughaddou H 2018 Small 14 1804066 | Epitaxial Synthesis of Blue Phosphorene
[40] | Tian H, Zhang J Q, Ho W, Xu J P, Xia B, Xia Y, Fan J, Xu H, Xie M and Tong S Y 2019 Matter 1 1 | The “What” and “Why” of Materials
[41] | Han N, Gao N and Zhao J 2017 J. Phys. Chem. C 121 17893 | Initial Growth Mechanism of Blue Phosphorene on Au(111) Surface
[42] | Zeng J, Cui P and Zhang Z 2017 Phys. Rev. Lett. 118 046101 | Half Layer By Half Layer Growth of a Blue Phosphorene Monolayer on a GaN(001) Substrate
[43] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 | Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
[44] | Kresse G and Hafner J 1994 Phys. Rev. B 49 14251 | Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
[45] | Kresse G and Hafner J 1993 Phys. Rev. B 48 13115 | Ab initio molecular dynamics for open-shell transition metals
[46] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
[47] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 | From ultrasoft pseudopotentials to the projector augmented-wave method
[48] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | Generalized Gradient Approximation Made Simple
[49] | Zhuang J, Liu C, Gao Q, Liu Y, Feng H, Xu X, Wang J, Zhao J, Dou S X, Hu Z and Du Y 2018 ACS Nano 12 5059 | Band Gap Modulated by Electronic Superlattice in Blue Phosphorene
[50] | Ge Y, Wan W, Yang F and Yao Y 2015 New J. Phys. 17 035008 | The strain effect on superconductivity in phosphorene: a first-principles prediction
[51] | Shan H Y, Yu Y, Zhang R, Cheng R T, Zhang D, Luo Y, Wang X L, Li B W, Zu S, Lin F, Liu Z, Chang K and Fang Z Y 2019 Mater. Today 24 10 | Electron transfer and cascade relaxation dynamics of graphene quantum dots/MoS2 monolayer mixed-dimensional van der Waals heterostructures