[1] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 | Electric Field Effect in Atomically Thin Carbon Films
[2] | Hu H, Zavabeti A, Quan H, Zhu W, Wei H, Chen D and Ou J Z 2019 Biosens. Bioelectron. 142 111573 | Recent advances in two-dimensional transition metal dichalcogenides for biological sensing
[3] | Nair R R, Tsai I L, Sepioni M, Lehtinen O, Keinonen J, Krasheninnikov A V, Castro Neto A H, Katsnelson M I, Geim A K and Grigorieva I V 2013 Nat. Commun. 4 2010 | Dual origin of defect magnetism in graphene and its reversible switching by molecular doping
[4] | McCreary K M, Swartz A G, Han W, Fabian J and Kawakami R K 2012 Phys. Rev. Lett. 109 186604 | Magnetic Moment Formation in Graphene Detected by Scattering of Pure Spin Currents
[5] | Ugeda M M, Brihuega I, Guinea F and Gomez-Rodriguez J M 2010 Phys. Rev. Lett. 104 096804 | Missing Atom as a Source of Carbon Magnetism
[6] | Červenka J, Katsnelson M I and Flipse C F J 2009 Nat. Phys. 5 840 | Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects
[7] | Uchoa B, Kotov V N, Peres N M and Castro Neto A H 2008 Phys. Rev. Lett. 101 026805 | Localized Magnetic States in Graphene
[8] | Yazyev O V and Helm L 2007 Phys. Rev. B 75 125408 | Defect-induced magnetism in graphene
[9] | Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263 | The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets
[10] | Choi Y H, Kwon G H, Jeong J H, Jeong K S, Kwon H, An Y, Kim M, Kim H, Yi Y, Im S and Cho M H 2019 Appl. Surf. Sci. 494 37 | Trap-assisted high responsivity of a phototransistor using bi-layer MoSe2 grown by molecular beam epitaxy
[11] | Huang W, Yin Y and Li X 2018 Appl. Phys. Rev. 5 041110 | Atomic-scale mapping of interface reconstructions in multiferroic heterostructures
[12] | Hu T and Kan E 2019 Wiley Interdisciplinary Rev.: Comput. Mol. Sci. 9 e1409 | Progress and prospects in low-dimensional multiferroic materials
[13] | Gong C, Kim E M, Wang Y, Lee G and Zhang X 2019 Nat. Commun. 10 2657 | Multiferroicity in atomic van der Waals heterostructures
[14] | Sun W, Wang W, Chen D, Cheng Z and Wang Y 2019 Nanoscale 11 9931 | Valence mediated tunable magnetism and electronic properties by ferroelectric polarization switching in 2D FeI 2 /In 2 Se 3 van der Waals heterostructures
[15] | Zhang F, Mi W and Wang X 2019 Nanoscale 11 10329 | Tunable valley and spin splitting in 2 H -VSe 2 /BiFeO 3 (111) triferroic heterostructures
[16] | Wang Z, Tang C, Sachs R, Barlas Y and Shi J 2015 Phys. Rev. Lett. 114 016603 | Proximity-Induced Ferromagnetism in Graphene Revealed by the Anomalous Hall Effect
[17] | Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X D 2017 Nature 546 270 | Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit
[18] | Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265 | Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals
[19] | Huang C, Feng J, Wu F, Ahmed D, Huang B, Xiang H, Deng K and Kan E 2018 J. Am. Chem. Soc. 140 11519 | Toward Intrinsic Room-Temperature Ferromagnetism in Two-Dimensional Semiconductors
[20] | Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H and Zhang Y 2018 Nature 563 94 | Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2
[21] | Yu W, Li J, Herng T S, Wang Z, Zhao X, Chi X, Fu W, Abdelwahab I, Zhou J, Dan J, Chen Z, Chen Z, Li Z, Lu J, Pennycook S J, Feng Y P, Ding J and Loh K P 2019 Adv. Mater. 31 1903779 | Chemically Exfoliated VSe 2 Monolayers with Room‐Temperature Ferromagnetism
[22] | Zhou J, Qiao J, Duan C G, Bournel A, Wang K L and Zhao W 2019 ACS Appl. Mater. & Interfaces 11 17647 | Large Tunneling Magnetoresistance in VSe 2 /MoS 2 Magnetic Tunnel Junction
[23] | Esters M, Hennig R G and Johnson D C 2017 Phys. Rev. B 96 235147 | Dynamic instabilities in strongly correlated monolayers and bilayers
[24] | Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H and Batzill M 2018 Nat. Nanotechnol. 13 289 | Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates
[25] | Feng S and Mi W 2018 Appl. Surf. Sci. 458 191 | Strain and interlayer coupling tailored magnetic properties and valley splitting in layered ferrovalley 2H-VSe2
[26] | Zhang W, Zhang L, Wong P K J, Yuan J, Vinai G, Torelli P, van der Laan G, Feng Y P and Wee A T S 2019 ACS Nano 13 8997 | Magnetic Transition in Monolayer VSe 2 via Interface Hybridization
[27] | Coelho P M, Nguyen Cong K, Bonilla M, Kolekar S, Phan M H, Avila J, Asensio M C, Oleynik I I and Batzill M 2019 J. Phys. Chem. C 123 14089 | Charge Density Wave State Suppresses Ferromagnetic Ordering in VSe 2 Monolayers
[28] | Chen P, Pai W W, Chan Y H, Madhavan V, Chou M Y, Mo S K, Fedorov A V and Chiang T C 2018 Phys. Rev. Lett. 121 196402 | Unique Gap Structure and Symmetry of the Charge Density Wave in Single-Layer
[29] | Wang B, Zhang X, Zhang Y, Yuan S, Guo Y, Dong S and Wang J 2020 Mater. Horiz. 7 1623 | Prediction of a two-dimensional high- T C f-electron ferromagnetic semiconductor
[30] | Tu Z and Wu M 2020 Sci. Bull. 65 147 | Ultrahigh-strain ferroelasticity in two-dimensional honeycomb monolayers: from covalent to metallic bonding
[31] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 | From ultrasoft pseudopotentials to the projector augmented-wave method
[32] | Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
[33] | Blochl P E 1994 Phys. Rev. B 50 17953 | Projector augmented-wave method
[34] | Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207 | Hybrid functionals based on a screened Coulomb potential
[35] | King-Smith R D and Vanderbilt D 1993 Phys. Rev. B 47 1651 | Theory of polarization of crystalline solids
[36] | Vanderbilt D 2000 J. Phys. Chem. Solids 61 147 | Berry-phase theory of proper piezoelectric response
[37] | Togo A and Tanaka I 2015 Scr. Mater. 108 1 | First principles phonon calculations in materials science
[38] | Liu L, Ren X, Xie J, Cheng B, Liu W, An T, Qin H and Hu J 2019 Appl. Surf. Sci. 480 300 | Magnetic switches via electric field in BN nanoribbons
[39] | Yang J, Wang A, Zhang S, Liu J, Zhong Z and Chen L 2019 Phys. Chem. Chem. Phys. 21 132 | Coexistence of piezoelectricity and magnetism in two-dimensional vanadium dichalcogenides
[40] | Zhang C, Nie Y, Sanvito S and Du A 2019 Nano Lett. 19 1366 | First-Principles Prediction of a Room-Temperature Ferromagnetic Janus VSSe Monolayer with Piezoelectricity, Ferroelasticity, and Large Valley Polarization
[41] | Lado J L, Fernández-Rossier J 2017 2D Mater. 4 035002 | On the origin of magnetic anisotropy in two dimensional CrI 3
[42] | Xu X, Ma Y, Huang B and Dai Y 2019 Phys. Chem. Chem. Phys. 21 7440 | Two-dimensional ferroelastic semiconductors in single-layer indium oxygen halide InOY (Y = Cl/Br)
[43] | Salje E K H 2012 Annu. Rev. Mater. Res. 42 265 | Ferroelastic Materials
[44] | Wang C, Ke X, Wang J, Liang R, Luo Z, Tian Y, Yi D, Zhang Q, Wang J, Han X F, Van Tendeloo G, Chen L Q, Nan C W, Ramesh R and Zhang J 2016 Nat. Commun. 7 10636 | Ferroelastic switching in a layered-perovskite thin film
[45] | Zhu H, Wang Y, Xiao J, Liu M, Xiong S, Wong Z J, Ye Z, Ye Y, Yin X and Zhang X 2015 Nat. Nanotechnol. 10 151 | Observation of piezoelectricity in free-standing monolayer MoS2
[46] | Wu W, Wang L, Li Y, Zhang F, Lin L, Niu S, Chenet D, Zhang X, Hao Y, Heinz T F, Hone J and Wang Z L 2014 Nature 514 470 | Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics