[1] | Gauthier D 2005 Phys. World 18 30 | Slow light brings faster communications
[2] | Perez D, Gasulla I, Crudgington L, Thomson D J, Khokhar A Z, Li K, Cao W, Mashanovich G Z and Capmany J 2017 Nat. Commun. 8 636 | Multipurpose silicon photonics signal processor core
[3] | Yu L J, Wang H Q, Li H, Wang Z, Huang Y D, You L X and Zhang W 2019 Chin. Phys. Lett. 36 084202 | A Silicon Shallow-Ridge Waveguide Integrated Superconducting Nanowire Single Photon Detector Towards Quantum Photonic Circuits
[4] | Cui X, Zhang C, Liang S, Zhu H L and Hou L P 2014 Chin. Phys. Lett. 31 044204 | Enhanced Impurity-Free Intermixing Bandgap Engineering for InP-Based Photonic Integrated Circuits
[5] | Zhao P C, Qi F, Qi A Y, Wang Y F and Zheng W H 2017 Chin. Phys. Lett. 34 024202 | Static and Dynamic Analysis of Lasing Action from Single and Coupled Photonic Crystal Nanocavity Lasers
[6] | Ding Y X, Wang L L and Yu L 2018 Chin. Phys. Lett. 35 014201 | Babinet-Inverted Optical Nanoantenna Analogue of Electromagnetically Induced Transparency
[7] | Lin J T, Zhou J X, Wu R B, Wang M, Fang Z W, Chu W, Zhang J H, Qiao L L and Cheng Y 2019 Micromachines 10 612 | High-Precision Propagation-Loss Measurement of Single-Mode Optical Waveguides on Lithium Niobate on Insulator
[8] | Luo R, He Y, Liang H X, Li M X and Lin Q 2018 Optica 5 1006 | Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide
[9] | Elkus B S, Abdelsalam K, Rao A, Velev V, Fathpour S, Kumar P and Kanter G S 2019 Opt. Express 27 38521 | Generation of broadband correlated photon-pairs in short thin-film lithium-niobate waveguides
[10] | Geiss R, Saravi S, Sergeyev A, Diziain S, Setzpfandt F, Schrempel F, Grange R, Kley E B, Tunnermann A and Pertsch T 2015 Opt. Lett. 40 2715 | Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation
[11] | Siew S Y, Cheung E J H, Liang H D, Bettiol A, Toyoda N, Alshehri B, Dogheche E and Danner A J 2018 Opt. Express 26 4421 | Ultra-low loss ridge waveguides on lithium niobate via argon ion milling and gas clustered ion beam smoothening
[12] | Volk M F, Suntsov S, Ruter C E and Kip D 2016 Opt. Express 24 1386 | Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing
[13] | Niu Y, Lin C, Liu X, Chen Y, Hu X, Zhang Y, Cai X, Gong Y X, Xie Z and Zhu S 2020 Appl. Phys. Lett. 116 101104 | Optimizing the efficiency of a periodically poled LNOI waveguide using in situ monitoring of the ferroelectric domains
[14] | Zhang M, Wang C, Cheng R, Shams-Ansari A and Lončar M 2017 Optica 4 1536 | Monolithic ultra-high-Q lithium niobate microring resonator
[15] | Zhang J H, Fang Z W, Lin J T, Zhou J X, Wang M, Wu R B, Gao R H and Cheng Y 2019 Nanomaterials 9 1218 | Fabrication of Crystalline Microresonators of High Quality Factors with a Controllable Wedge Angle on Lithium Niobate on Insulator
[16] | Fang Z W, Luo H P, Lin J T, Wang M, Zhang J H, Wu R B, Zhou J X, Chu W, Lu T and Cheng Y 2019 Opt. Lett. 44 5953 | Efficient electro-optical tuning of an optical frequency microcomb on a monolithically integrated high-Q lithium niobate microdisk
[17] | Lin J T, Yao N, Hao Z Z, Zhang J H, Mao W B, Wang M, Chu W, Wu R B, Fang Z W, Qiao L L, Fang W, Bo F and Cheng Y 2019 Phys. Rev. Lett. 122 173903 | Broadband Quasi-Phase-Matched Harmonic Generation in an On-Chip Monocrystalline Lithium Niobate Microdisk Resonator
[18] | Hao Z Z, Wang J, Ma S Q, Mao W B, Bo F, Gao F, Zhang G Q and Xu J J 2017 Photon. Res. 5 623 | Sum-frequency generation in on-chip lithium niobate microdisk resonators
[19] | Wang L, Wang C, Wang J, Bo F, Zhang M, Gong Q H, Loncar M and Xiao Y F 2018 Opt. Lett. 43 2917 | High-Q chaotic lithium niobate microdisk cavity
[20] | He Y, Yang Q F, Ling J, Luo R, Liang H, Li M, Shen B, Wang H, Vahala K and Lin Q 2019 Optica 6 1138 | Self-starting bi-chromatic LiNbO 3 soliton microcomb
[21] | Zheng Y, Fang Z, Liu S, Cheng Y and Chen X 2019 Phys. Rev. Lett. 122 253902 | High- Exterior Whispering-Gallery Modes in a Double-Layer Crystalline Microdisk Resonator
[22] | Wolf R, Jia Y, Bonaus S, Werner C S, Herr S J, Breunig I, Buse K and Zappe H 2018 Optica 5 872 | Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries
[23] | Lu J, Surya J B, Liu X, Bruch A W, Gong Z, Xu Y and Tang H X 2019 Optica 6 1455 | Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W
[24] | Lin J, Xu Y, Fang Z, Wang M, Song J, Wang N, Qiao L, Fang W and Cheng Y 2015 Sci. Rep. 5 8072 | Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining
[25] | Wu R B, Lin J T, Wang M, Fang Z W, Chu W, Zhang J H, Zhou J X and Cheng Y 2019 Opt. Lett. 44 4698 | Fabrication of a multifunctional photonic integrated chip on lithium niobate on insulator using femtosecond laser-assisted chemomechanical polish
[26] | Rao A, Patil A, Rabiei P, Honardoost A, Desalvo R, Paolella A and Fathpour S 2016 Opt. Lett. 41 5700 | High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50 GHz
[27] | Jin M, Chen J Y, Sua Y M and Huang Y P 2019 Opt. Lett. 44 1265 | High-extinction electro-optic modulation on lithium niobate thin film
[28] | Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P and Lončar M 2018 Nature 562 101 | Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages
[29] | He M, Xu M, Ren Y, Jian J, Ruan Z, Xu Y, Gao S, Sun S, Wen X, Zhou L, Liu L, Guo C, Chen H, Yu S, Liu L and Cai X 2019 Nat. Photon. 13 359 | High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond
[30] | Liang H X, Luo R, He Y, Jiang H W and Lin Q 2017 Optica 4 1251 | High-quality lithium niobate photonic crystal nanocavities
[31] | Diziain S, Geiss R, Zilk M, Schrempel F, Kley E B, Tunnermann A and Pertsch T 2013 Appl. Phys. Lett. 103 251101 | Mode analysis of photonic crystal L3 cavities in self-suspended lithium niobate membranes
[32] | Xu H, Dai D, Liu L and Shi Y 2020 Opt. Express 28 10899 | Proposal for an ultra-broadband polarization beam splitter using an anisotropy-engineered Mach-Zehnder interferometer on the x-cut lithium-niobate-on-insulator
[33] | Ding T, Zheng Y and Chen X 2019 J. Lightwave Technol. 37 1296 | On-Chip Solc-Type Polarization Control and Wavelength Filtering Utilizing Periodically Poled Lithium Niobate on Insulator Ridge Waveguide
[34] | Wu R, Wang M, Xu J, Qi J, Chu W, Fang Z, Zhang J, Zhou J, Qiao L, Chai Z, Lin J and Cheng Y 2018 Nanomaterials 8 910 | Long Low-Loss-Litium Niobate on Insulator Waveguides with Sub-Nanometer Surface Roughness
[35] | Wang M, Wu R, Lin J, Zhang J, Fang Z, Chai Z and Cheng Y 2019 Quantum Eng. 1 e9 | Chemo‐mechanical polish lithography: A pathway to low loss large‐scale photonic integration on lithium niobate on insulator