Giant-Capacitance-Induced Wide Quantum Hall Plateaus in Graphene on LaAlO/SrTiO Heterostructures
-
Abstract
Hybrid structures of two distinct materials provide an excellent opportunity to optimize functionalities. We report the realization of wide quantum Hall plateaus in graphene field-effect devices on the LaAlO/SrTiO heterostructures. Well-defined quantized Hall resistance plateaus at filling factors can be obtained over wide ranges of the magnetic field and gate voltage, e.g., extending from 2 T to a maximum available magnetic field of 9 T. By using a simple band diagram model, it is revealed that these wide plateaus arise from the ultra-large capacitance of the ultra-thin LAO layer acting as the dielectric layer. This is distinctly different from the case of epitaxial graphene on SiC substrates, where the realization of giant Hall plateaus relies on the charge transfer between the graphene layer and interface states in SiC. Our results offer an alternative route towards optimizing the quantum Hall performance of graphene, which may find its applications in the further development of quantum resistance metrology. -
-
References
[1] Novoselov K S and Geim A K 2007 Nat. Mater. 6 183 doi: 10.1038/nmat1849[2] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 doi: 10.1103/RevModPhys.81.109[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197 doi: 10.1038/nature04233[4] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201 doi: 10.1038/nature04235[5] Jiang Z, Zhang Y, Tan Y W, Stormer H L and Kim P 2007 Solid State Commun. 143 14 doi: 10.1016/j.ssc.2007.02.046[6] Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P and Geim A K 2007 Science 315 1379 doi: 10.1126/science.1137201[7] Janssen T J B M, Tzalenchuk A, Lara-Avila S, Kubatkin S and Fal'Ko V I 2013 Rep. Prog. Phys. 76 104501 doi: 10.1088/0034-4885/76/10/104501[8] Tzalenchuk A, Lara-Avila S, Kalaboukhov A, Paolillo S, Syväjärvi M, Yakimova R, Kazakova O, Janssen T J B M, Fal'Ko V I and Kubatkin S 2010 Nat. Nanotechnol. 5 186 doi: 10.1038/nnano.2009.474[9] Lafont F, Ribeiro-Palau R, Kazazis D, Michon A, Couturaud O, Consejo C, Chassagne T, Zielinski M, Portail M, Jouault B, Schopfer F and Poirier W 2015 Nat. Commun. 6 6806 doi: 10.1038/ncomms7806[10] Ribeiro-Palau R, Lafont F, Brun-Picard J, Kazazis D, Michon A, Cheynis F, Couturaud O, Consejo C, Jouault B, Poirier W and Schopfer F 2015 Nat. Nanotechnol. 10 965 doi: 10.1038/nnano.2015.192[11] Kruskopf M and Elmquist R E 2018 Metrologia 55 R27 doi: 10.1088/1681-7575/aacd23[12] Janssen T J B M, Tzalenchuk A, Yakimova R, Kubatkin S, Lara-Avila S, Kopylov S and Fal'Ko V I 2011 Phys. Rev. B 83 233402 doi: 10.1103/PhysRevB.83.233402[13] Takase K, Tanabe S, Sasaki S, Hibino H and Muraki K 2012 Phys. Rev. B 86 165435 doi: 10.1103/PhysRevB.86.165435[14] Kopylov S, Tzalenchuk A, Kubatkin S and Fal'ko V I 2010 Appl. Phys. Lett. 97 112109 doi: 10.1063/1.3487782[15] Ohtomo A and Hwang H Y 2004 Nature 427 423 doi: 10.1038/nature02308[16] Thiel S, Hammerl G, Schmehl A, Schneider C W and Mannhart J 2006 Science 313 1942 doi: 10.1126/science.1131091[17] Aliaj I, Torre I, Miseikis V, di Gennaro E, Sambri A, Gamucci A, Coletti C, Beltram F, Granozio F M, Polini M, Pellegrini V and Roddaro S 2016 APL Mater. 4 066101 doi: 10.1063/1.4953821[18] Jnawali G, Huang M, Hsu J F, Lee H, Lee J W, Irvin P, Eom C B, D'Urso B and Levy J 2017 Adv. Mater. 29 1603488 doi: 10.1002/adma.201603488[19] Tao R, Li L, Zhu L, Yan Y, Guo L, Fan X and Zeng C 2020 Appl. Phys. Express 13 035001 doi: 10.35848/1882-0786/ab705b[20] Kim S, Jo I, Dillen D C, Ferrer D A, Fallahazad B, Yao Z, Banerjee S K and Tutuc E 2012 Phys. Rev. Lett. 108 116404 doi: 10.1103/PhysRevLett.108.116404[21] Dean C R, Young A F, Cadden-Zimansky P, Wang L, Ren H, Watanabe K, Taniguchi T, Kim P, Hone J and Shepard K L 2011 Nat. Phys. 7 693 doi: 10.1038/nphys2007[22] Liang H, Cheng L, Wei L, Luo Z, Yu G, Zeng C and Zhang Z 2015 Phys. Rev. B 92 075309 doi: 10.1103/PhysRevB.92.075309[23] Cheng L, Wei L, Liang H, Yan Y, Cheng G, Lv M, Lin T, Kang T, Yu G, Chu J, Zhang Z and Zeng C 2017 Nano Lett. 17 6534 doi: 10.1021/acs.nanolett.7b02128[24] Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L and Dean C R 2013 Science 342 614 doi: 10.1126/science.1244358[25] Alexander-Webber J A, Huang J, Maude D K, Janssen T J B M, Tzalenchuk A, Antonov V, Yager T, Lara-Avila S, Kubatkin S, Yakimova R and Nicholas R J 2016 Sci. Rep. 6 30296 doi: 10.1038/srep30296[26] Yang M, Couturaud O, Desrat W, Consejo C, Kazazis D, Yakimova R, Syväjärvi M, Goiran M, Béard J, Frings P, Pierre M, Cresti A, Escoffier W and Jouault B 2016 Phys. Rev. Lett. 117 237702 doi: 10.1103/PhysRevLett.117.237702[27] Kudrynskyi Z R, Bhuiyan M A, Makarovsky O, Greener J D G, Vdovin E E, Kovalyuk Z D, Cao Y, Mishchenko A, Novoselov K S, Beton P H, Eaves L and Patanè A 2017 Phys. Rev. Lett. 119 157701 doi: 10.1103/PhysRevLett.119.157701[28] Santander-Syro A F, Copie O, Kondo T, Fortuna F, Pailhès S, Weht R, Qiu X G, Bertran F, Nicolaou A, Taleb-Ibrahimi A, Fèvre P L, Herranz G, Bibes M, Reyren N, Apertet Y, Lecoeur P, Barthélémy A and Rozenberg M J 2011 Nature 469 189 doi: 10.1038/nature09720[29] Yan Y, Guo L, Li L, Wei L, Chen W, Zeng C and Hou J 2020 Phys. Rev. B 101 035119 doi: 10.1103/PhysRevB.101.035119[30] Ponomarenko L A, Yang R, Gorbachev R V, Blake P, Mayorov A S, Novoselov K S, Katsnelson M I and Geim A K 2010 Phys. Rev. Lett. 105 136801 doi: 10.1103/PhysRevLett.105.136801[31] Park B E and Ishiwara H 2003 Appl. Phys. Lett. 82 1197 doi: 10.1063/1.1556966[32] Takase K, Hibino H and Muraki K 2015 Phys. Rev. B 92 125407 doi: 10.1103/PhysRevB.92.125407[33] Aoki H and Ando T 1981 Solid State Commun. 38 1079 doi: 10.1016/0038-10988190021-1[34] Huckestein B 1995 Rev. Mod. Phys. 67 357 doi: 10.1103/RevModPhys.67.357[35] Xiao M, Qiu C, Zhang Z and Peng L M 2017 ACS Appl. Mater. & Interfaces 9 34050 doi: 10.1021/acsami.7b09408[36] Li W, Zhou J, Cai S, Yu Z, Zhang J, Fang N, Li T, Wu Y, Chen T, Xie X, Ma H, Yan K, Dai N, Wu X, Zhao H, Wang Z, He D, Pan L, Shi Y, Wang P, Chen W, Nagashio K, Duan X and Wang X 2019 Nat. Electron. 2 563 doi: 10.1038/s41928-019-0334-y -
Related Articles
[1] Lili Zhao, Wenlu Lin, Y. J. Chung, K. W. Baldwin, L. N. Pfeiffer, Yang Liu. Finite Capacitive Response at the Quantum Hall Plateau [J]. Chin. Phys. Lett., 2022, 39(9): 097301. doi: 10.1088/0256-307X/39/9/097301 [2] Li Guan, Feng-Xue Tan, Guo-Qi Jia, Guang-Ming Shen, Bao-Ting Liu, Xu Li. Contribution of Surface Defects to the Interface Conductivity of SrTiO3/LaAlO3 [J]. Chin. Phys. Lett., 2016, 33(8): 087301. doi: 10.1088/0256-307X/33/8/087301 [3] WANG Qing-Yan, LI Zhi, ZHANG Wen-Hao, ZHANG Zuo-Cheng, ZHANG Jin-Song, LI Wei, DING Hao, OU Yun-Bo, DENG Peng, CHANG Kai, WEN Jing, SONG Can-Li, HE Ke, JIA Jin-Feng, JI Shuai-Hua, WANG Ya-Yu, WANG Li-Li, CHEN Xi, MA Xu-Cun, XUE Qi-Kun. Interface-Induced High-Temperature Superconductivity in Single Unit-Cell FeSe Films on SrTiO3 [J]. Chin. Phys. Lett., 2012, 29(3): 037402. doi: 10.1088/0256-307X/29/3/037402 [4] M. R. Setare, D. Jahani. Quantum Hall Effect and Different Zero-Energy Modes of Graphene [J]. Chin. Phys. Lett., 2011, 28(9): 097302. doi: 10.1088/0256-307X/28/9/097302 [5] TU Tao, ZHAO Yong-Jie, GUO Guo-Ping, HAO Xiao-Jie, GUO Guang-Can. Form of Scaling Function in Quantum Hall Plateau Transitions [J]. Chin. Phys. Lett., 2007, 24(5): 1346-1349. [6] SHU Qiang, LIN Yao-Wang, XING Xiao-Dong, YAO Jiang-Hong, PI Biao, SHU Yong-Chun, WANG Zhan-Guo, XU Jing-Jun. Effect of Small-Angle Scattering on the Integer Quantum Hall Plateau [J]. Chin. Phys. Lett., 2006, 23(2): 436-438. [7] ZHOU Yu-Gang, SHEN Bo, YU Hui-Qiang, LIU Jie, ZHOU Hui-Mei, ZHANG Rong, SHI Yi, ZHENG You-Dou, T. Someya, Y. Arakawa. Polarization-Induced Charges in Modulation-Doped AlxGa1-xN/GaN Heterostructures Through Capacitance-Voltage Profiling [J]. Chin. Phys. Lett., 2002, 19(8): 1172-1175. [8] LI Bin, ZENG Chang-Gan, WANG Hai-Qian, WANG Bing, HOU Jian-Guo. Scanning Tunnelling Microscope Tip-Induced Reconstruction onSi(111)√3 x√3 R30°-Ag Surface [J]. Chin. Phys. Lett., 2001, 18(2): 181-183. [9] XU Qing-Yu, NI Gang, SANG Hai, DU You-Wei. Giant Hall Effect of Fe45.51(Al2O3 )54.49 Nano-granular Film [J]. Chin. Phys. Lett., 2000, 17(3): 227-229. [10] HUANG Fengyi. POSSIBLE EXPLANATION OF THE PLATEAU WIDTH IN THE QUANTUM HALL EFFECT AT FINITE TEMPERATURE [J]. Chin. Phys. Lett., 1989, 6(12): 541-545.