Processing math: 100%

Giant-Capacitance-Induced Wide Quantum Hall Plateaus in Graphene on LaAlO3/SrTiO3 Heterostructures

Funds: Supported by the National Natural Science Foundation of China (Grant Nos. 11974324, 11804326 and U1832151), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDC07010000), the National Key Research and Development Program of China (Grant No. 2017YFA0403600), Anhui Initiative in Quantum Information Technologies (Grant No. AHY170000), and Hefei Science Center CAS (Grant No. 2018HSC-UE014).
  • Received Date: April 16, 2020
  • Published Date: June 30, 2020
  • Hybrid structures of two distinct materials provide an excellent opportunity to optimize functionalities. We report the realization of wide quantum Hall plateaus in graphene field-effect devices on the LaAlO3/SrTiO3 heterostructures. Well-defined quantized Hall resistance plateaus at filling factors v=±2 can be obtained over wide ranges of the magnetic field and gate voltage, e.g., extending from 2 T to a maximum available magnetic field of 9 T. By using a simple band diagram model, it is revealed that these wide plateaus arise from the ultra-large capacitance of the ultra-thin LAO layer acting as the dielectric layer. This is distinctly different from the case of epitaxial graphene on SiC substrates, where the realization of giant Hall plateaus relies on the charge transfer between the graphene layer and interface states in SiC. Our results offer an alternative route towards optimizing the quantum Hall performance of graphene, which may find its applications in the further development of quantum resistance metrology.
  • Article Text

  • [1]
    Novoselov K S and Geim A K 2007 Nat. Mater. 6 183 doi: 10.1038/nmat1849

    CrossRef Google Scholar

    [2]
    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 doi: 10.1103/RevModPhys.81.109

    CrossRef Google Scholar

    [3]
    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197 doi: 10.1038/nature04233

    CrossRef Google Scholar

    [4]
    Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201 doi: 10.1038/nature04235

    CrossRef Google Scholar

    [5]
    Jiang Z, Zhang Y, Tan Y W, Stormer H L and Kim P 2007 Solid State Commun. 143 14 doi: 10.1016/j.ssc.2007.02.046

    CrossRef Google Scholar

    [6]
    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P and Geim A K 2007 Science 315 1379 doi: 10.1126/science.1137201

    CrossRef Google Scholar

    [7]
    Janssen T J B M, Tzalenchuk A, Lara-Avila S, Kubatkin S and Fal'Ko V I 2013 Rep. Prog. Phys. 76 104501 doi: 10.1088/0034-4885/76/10/104501

    CrossRef Google Scholar

    [8]
    Tzalenchuk A, Lara-Avila S, Kalaboukhov A, Paolillo S, Syväjärvi M, Yakimova R, Kazakova O, Janssen T J B M, Fal'Ko V I and Kubatkin S 2010 Nat. Nanotechnol. 5 186 doi: 10.1038/nnano.2009.474

    CrossRef Google Scholar

    [9]
    Lafont F, Ribeiro-Palau R, Kazazis D, Michon A, Couturaud O, Consejo C, Chassagne T, Zielinski M, Portail M, Jouault B, Schopfer F and Poirier W 2015 Nat. Commun. 6 6806 doi: 10.1038/ncomms7806

    CrossRef Google Scholar

    [10]
    Ribeiro-Palau R, Lafont F, Brun-Picard J, Kazazis D, Michon A, Cheynis F, Couturaud O, Consejo C, Jouault B, Poirier W and Schopfer F 2015 Nat. Nanotechnol. 10 965 doi: 10.1038/nnano.2015.192

    CrossRef Google Scholar

    [11]
    Kruskopf M and Elmquist R E 2018 Metrologia 55 R27 doi: 10.1088/1681-7575/aacd23

    CrossRef Google Scholar

    [12]
    Janssen T J B M, Tzalenchuk A, Yakimova R, Kubatkin S, Lara-Avila S, Kopylov S and Fal'Ko V I 2011 Phys. Rev. B 83 233402 doi: 10.1103/PhysRevB.83.233402

    CrossRef Google Scholar

    [13]
    Takase K, Tanabe S, Sasaki S, Hibino H and Muraki K 2012 Phys. Rev. B 86 165435 doi: 10.1103/PhysRevB.86.165435

    CrossRef Google Scholar

    [14]
    Kopylov S, Tzalenchuk A, Kubatkin S and Fal'ko V I 2010 Appl. Phys. Lett. 97 112109 doi: 10.1063/1.3487782

    CrossRef Google Scholar

    [15]
    Ohtomo A and Hwang H Y 2004 Nature 427 423 doi: 10.1038/nature02308

    CrossRef Google Scholar

    [16]
    Thiel S, Hammerl G, Schmehl A, Schneider C W and Mannhart J 2006 Science 313 1942 doi: 10.1126/science.1131091

    CrossRef Google Scholar

    [17]
    Aliaj I, Torre I, Miseikis V, di Gennaro E, Sambri A, Gamucci A, Coletti C, Beltram F, Granozio F M, Polini M, Pellegrini V and Roddaro S 2016 APL Mater. 4 066101 doi: 10.1063/1.4953821

    CrossRef Google Scholar

    [18]
    Jnawali G, Huang M, Hsu J F, Lee H, Lee J W, Irvin P, Eom C B, D'Urso B and Levy J 2017 Adv. Mater. 29 1603488 doi: 10.1002/adma.201603488

    CrossRef Google Scholar

    [19]
    Tao R, Li L, Zhu L, Yan Y, Guo L, Fan X and Zeng C 2020 Appl. Phys. Express 13 035001 doi: 10.35848/1882-0786/ab705b

    CrossRef Google Scholar

    [20]
    Kim S, Jo I, Dillen D C, Ferrer D A, Fallahazad B, Yao Z, Banerjee S K and Tutuc E 2012 Phys. Rev. Lett. 108 116404 doi: 10.1103/PhysRevLett.108.116404

    CrossRef Google Scholar

    [21]
    Dean C R, Young A F, Cadden-Zimansky P, Wang L, Ren H, Watanabe K, Taniguchi T, Kim P, Hone J and Shepard K L 2011 Nat. Phys. 7 693 doi: 10.1038/nphys2007

    CrossRef Google Scholar

    [22]
    Liang H, Cheng L, Wei L, Luo Z, Yu G, Zeng C and Zhang Z 2015 Phys. Rev. B 92 075309 doi: 10.1103/PhysRevB.92.075309

    CrossRef Google Scholar

    [23]
    Cheng L, Wei L, Liang H, Yan Y, Cheng G, Lv M, Lin T, Kang T, Yu G, Chu J, Zhang Z and Zeng C 2017 Nano Lett. 17 6534 doi: 10.1021/acs.nanolett.7b02128

    CrossRef Google Scholar

    [24]
    Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L and Dean C R 2013 Science 342 614 doi: 10.1126/science.1244358

    CrossRef Google Scholar

    [25]
    Alexander-Webber J A, Huang J, Maude D K, Janssen T J B M, Tzalenchuk A, Antonov V, Yager T, Lara-Avila S, Kubatkin S, Yakimova R and Nicholas R J 2016 Sci. Rep. 6 30296 doi: 10.1038/srep30296

    CrossRef Google Scholar

    [26]
    Yang M, Couturaud O, Desrat W, Consejo C, Kazazis D, Yakimova R, Syväjärvi M, Goiran M, Béard J, Frings P, Pierre M, Cresti A, Escoffier W and Jouault B 2016 Phys. Rev. Lett. 117 237702 doi: 10.1103/PhysRevLett.117.237702

    CrossRef Google Scholar

    [27]
    Kudrynskyi Z R, Bhuiyan M A, Makarovsky O, Greener J D G, Vdovin E E, Kovalyuk Z D, Cao Y, Mishchenko A, Novoselov K S, Beton P H, Eaves L and Patanè A 2017 Phys. Rev. Lett. 119 157701 doi: 10.1103/PhysRevLett.119.157701

    CrossRef Google Scholar

    [28]
    Santander-Syro A F, Copie O, Kondo T, Fortuna F, Pailhès S, Weht R, Qiu X G, Bertran F, Nicolaou A, Taleb-Ibrahimi A, Fèvre P L, Herranz G, Bibes M, Reyren N, Apertet Y, Lecoeur P, Barthélémy A and Rozenberg M J 2011 Nature 469 189 doi: 10.1038/nature09720

    CrossRef Google Scholar

    [29]
    Yan Y, Guo L, Li L, Wei L, Chen W, Zeng C and Hou J 2020 Phys. Rev. B 101 035119 doi: 10.1103/PhysRevB.101.035119

    CrossRef Google Scholar

    [30]
    Ponomarenko L A, Yang R, Gorbachev R V, Blake P, Mayorov A S, Novoselov K S, Katsnelson M I and Geim A K 2010 Phys. Rev. Lett. 105 136801 doi: 10.1103/PhysRevLett.105.136801

    CrossRef Google Scholar

    [31]
    Park B E and Ishiwara H 2003 Appl. Phys. Lett. 82 1197 doi: 10.1063/1.1556966

    CrossRef Google Scholar

    [32]
    Takase K, Hibino H and Muraki K 2015 Phys. Rev. B 92 125407 doi: 10.1103/PhysRevB.92.125407

    CrossRef Google Scholar

    [33]
    Aoki H and Ando T 1981 Solid State Commun. 38 1079 doi: 10.1016/0038-10988190021-1

    CrossRef Google Scholar

    [34]
    Huckestein B 1995 Rev. Mod. Phys. 67 357 doi: 10.1103/RevModPhys.67.357

    CrossRef Google Scholar

    [35]
    Xiao M, Qiu C, Zhang Z and Peng L M 2017 ACS Appl. Mater. & Interfaces 9 34050 doi: 10.1021/acsami.7b09408

    CrossRef Google Scholar

    [36]
    Li W, Zhou J, Cai S, Yu Z, Zhang J, Fang N, Li T, Wu Y, Chen T, Xie X, Ma H, Yan K, Dai N, Wu X, Zhao H, Wang Z, He D, Pan L, Shi Y, Wang P, Chen W, Nagashio K, Duan X and Wang X 2019 Nat. Electron. 2 563 doi: 10.1038/s41928-019-0334-y

    CrossRef Google Scholar

  • Related Articles

    [1]Lili Zhao, Wenlu Lin, Y. J. Chung, K. W. Baldwin, L. N. Pfeiffer, Yang Liu. Finite Capacitive Response at the Quantum Hall Plateau [J]. Chin. Phys. Lett., 2022, 39(9): 097301. doi: 10.1088/0256-307X/39/9/097301
    [2]Li Guan, Feng-Xue Tan, Guo-Qi Jia, Guang-Ming Shen, Bao-Ting Liu, Xu Li. Contribution of Surface Defects to the Interface Conductivity of SrTiO3/LaAlO3 [J]. Chin. Phys. Lett., 2016, 33(8): 087301. doi: 10.1088/0256-307X/33/8/087301
    [3]WANG Qing-Yan, LI Zhi, ZHANG Wen-Hao, ZHANG Zuo-Cheng, ZHANG Jin-Song, LI Wei, DING Hao, OU Yun-Bo, DENG Peng, CHANG Kai, WEN Jing, SONG Can-Li, HE Ke, JIA Jin-Feng, JI Shuai-Hua, WANG Ya-Yu, WANG Li-Li, CHEN Xi, MA Xu-Cun, XUE Qi-Kun. Interface-Induced High-Temperature Superconductivity in Single Unit-Cell FeSe Films on SrTiO3 [J]. Chin. Phys. Lett., 2012, 29(3): 037402. doi: 10.1088/0256-307X/29/3/037402
    [4]M. R. Setare, D. Jahani. Quantum Hall Effect and Different Zero-Energy Modes of Graphene [J]. Chin. Phys. Lett., 2011, 28(9): 097302. doi: 10.1088/0256-307X/28/9/097302
    [5]TU Tao, ZHAO Yong-Jie, GUO Guo-Ping, HAO Xiao-Jie, GUO Guang-Can. Form of Scaling Function in Quantum Hall Plateau Transitions [J]. Chin. Phys. Lett., 2007, 24(5): 1346-1349.
    [6]SHU Qiang, LIN Yao-Wang, XING Xiao-Dong, YAO Jiang-Hong, PI Biao, SHU Yong-Chun, WANG Zhan-Guo, XU Jing-Jun. Effect of Small-Angle Scattering on the Integer Quantum Hall Plateau [J]. Chin. Phys. Lett., 2006, 23(2): 436-438.
    [7]ZHOU Yu-Gang, SHEN Bo, YU Hui-Qiang, LIU Jie, ZHOU Hui-Mei, ZHANG Rong, SHI Yi, ZHENG You-Dou, T. Someya, Y. Arakawa. Polarization-Induced Charges in Modulation-Doped AlxGa1-xN/GaN Heterostructures Through Capacitance-Voltage Profiling [J]. Chin. Phys. Lett., 2002, 19(8): 1172-1175.
    [8]LI Bin, ZENG Chang-Gan, WANG Hai-Qian, WANG Bing, HOU Jian-Guo. Scanning Tunnelling Microscope Tip-Induced Reconstruction onSi(111)√3 x√3 R30°-Ag Surface [J]. Chin. Phys. Lett., 2001, 18(2): 181-183.
    [9]XU Qing-Yu, NI Gang, SANG Hai, DU You-Wei. Giant Hall Effect of Fe45.51(Al2O3 )54.49 Nano-granular Film [J]. Chin. Phys. Lett., 2000, 17(3): 227-229.
    [10]HUANG Fengyi. POSSIBLE EXPLANATION OF THE PLATEAU WIDTH IN THE QUANTUM HALL EFFECT AT FINITE TEMPERATURE [J]. Chin. Phys. Lett., 1989, 6(12): 541-545.

Catalog

    Article views (294) PDF downloads (588) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return