[1] | Nielsen M, Chuang I 2000 Quantum Computation and Quantum Information (Cambridge University Press) |
[2] | Leibfried D, Blatt R, Monroe C and Wineland D 2003 Rev. Mod. Phys. 75 281 | Quantum dynamics of single trapped ions
[3] | Harty T P, Allcock D T C, Ballance C J, Guidoni L, Janacek H A, Linke N M, Stacey D N and Lucas D M 2014 Phys. Rev. Lett. 113 220501 | High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit
[4] | Ballance C J, Harty T P, Linke N M, Sepiol M A and Lucas D M 2016 Phys. Rev. Lett. 117 060504 | High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits
[5] | Gaebler J P, Tan T R, Lin Y, Wan Y, Bowler R, Keith A C, Glancy S, Coakley K, Knill E, Leibfried D and Wineland D J 2016 Phys. Rev. Lett. 117 060505 | High-Fidelity Universal Gate Set for Ion Qubits
[6] | Monz T, Nigg D, Martinez E A, Brandl M F, Schindler P, Rines R, Wang S X, Chuang I L and Blatt R 2016 Science 351 1068 | Realization of a scalable Shor algorithm
[7] | Wright K, Beck K, Debnath S, Amini J, Nam Y, Grzesiak N, Chen J S, Pisenti N, Chmielewski M, Collins C et al. 2019 Nat. Commun. 10 1 | Double-slit photoelectron interference in strong-field ionization of the neon dimer
[8] | Devoret M H and Schoelkopf R J 2013 Science 339 1169 | Superconducting Circuits for Quantum Information: An Outlook
[9] | Gambetta J M, Chow J M and Steffen M 2017 npj Quantum Inf. 3 1 | Suppression of photon shot noise dephasing in a tunable coupling superconducting qubit
[10] | Wendin G 2017 Rep. Prog. Phys. 80 106001 | Quantum information processing with superconducting circuits: a review
[11] | Arute F, Arya K, Babbush R, Bacon D, Bardin J C, Barends R, Biswas R, Boixo S, Brandao F G, Buell D A et al. 2019 Nature 574 505 | Quantum supremacy using a programmable superconducting processor
[12] | Fowler A G, Mariantoni M, Martinis J M and Cleland A N 2012 Phys. Rev. A 86 032324 | Surface codes: Towards practical large-scale quantum computation
[13] | Wineland D J, Monroe C, Itano W M, Leibfried D, King B E and Meekhof D M 1998 J. Res. Natl. Inst. Stand. Technol. 103 259 | Experimental issues in coherent quantum-state manipulation of trapped atomic ions
[14] | Hughes R J, James D F V, Knill E H, Laflamme R and Petschek A G 1996 Phys. Rev. Lett. 77 3240 | Decoherence Bounds on Quantum Computation with Trapped Ions
[15] | Clark R 2001 Proceedings of the 1st International Conference on Experimental Implementation of Quantum Computation: Sydney, Australia, 16–19 January 2001 (Rinton Press) |
[16] | Monroe C and Kim J 2013 Science 339 1164 | Scaling the Ion Trap Quantum Processor
[17] | Kielpinski D, Monroe C and Wineland D J 2002 Nature 417 709 | Architecture for a large-scale ion-trap quantum computer
[18] | Cirac J I and Zoller P 2000 Nature 404 579 | A scalable quantum computer with ions in an array of microtraps
[19] | Duan L M, Blinov B B, Moehring D L and Monroe C 2004 Quantum Inf. Comput. 4 165 |
[20] | Duan L M and Monroe C 2010 Rev. Mod. Phys. 82 1209 | Colloquium : Quantum networks with trapped ions
[21] | Monroe C, Raussendorf R, Ruthven A, Brown K R, Maunz P, Duan L M and Kim J 2014 Phys. Rev. A 89 022317 | Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects
[22] | Shen C and Duan L M 2014 Phys. Rev. A 90 022332 | High-fidelity quantum gates for trapped ions under micromotion
[23] | Wang S T, Shen C and Duan L M 2015 Sci. Rep. 5 8555 | Quantum Computation under Micromotion in a Planar Ion Crystal
[24] | Wu Y 2019 Ph.D. thesis, University of Michigan Ann Arbor |
[25] | Zou P, Xu J, Song W and Zhu S L 2010 Phys. Lett. A 374 1425 | Implementation of local and high-fidelity quantum conditional phase gates in a scalable two-dimensional ion trap
[26] | Kumph M, Brownnutt M and Blatt R 2011 New J. Phys. 13 073043 | Two-dimensional arrays of radio-frequency ion traps with addressable interactions
[27] | Sterling R C, Rattanasonti H, Weidt S, Lake K, Srinivasan P, Webster S, Kraft M and Hensinger W K 2014 Nat. Commun. 5 3637 | Fabrication and operation of a two-dimensional ion-trap lattice on a high-voltage microchip
[28] | García-Ripoll J J, Zoller P and Cirac J I 2003 Phys. Rev. Lett. 91 157901 | Speed Optimized Two-Qubit Gates with Laser Coherent Control Techniques for Ion Trap Quantum Computing
[29] | Duan L M 2004 Phys. Rev. Lett. 93 100502 | Scaling Ion Trap Quantum Computation through Fast Quantum Gates
[30] | Ratcliffe A K, Taylor R L, Hope J J and Carvalho A R R 2018 Phys. Rev. Lett. 120 220501 | Scaling Trapped Ion Quantum Computers Using Fast Gates and Microtraps
[31] | Gale E P G, Mehdi Z, Oberg L M, Ratcliffe A K, Haine S A and Hope J J 2020 Phys. Rev. A 101 052328 | Optimized fast gates for quantum computing with trapped ions
[32] | Wong-Campos J D, Moses S A, Johnson K G and Monroe C 2017 Phys. Rev. Lett. 119 230501 | Demonstration of Two-Atom Entanglement with Ultrafast Optical Pulses
[33] | Chiaverini J, Blakestad R B, Britton J, Jost J D, Langer C, Leibfried D, Ozeri R, and Wineland D J 2005 Quantum Inf. Comput. 5 419 |
[34] | Ouyang Z, Gao L, Fico M, Chappell W, Noll R and Cooks R 2007 Eur. J. Mass Spectrom. 13 13 | Quadrupole Ion Traps and Trap Arrays: Geometry, Material, Scale, Performance
[35] | Mizrahi J, Senko C, Neyenhuis B, Johnson K G, Campbell W C, Conover C W S and Monroe C 2013 Phys. Rev. Lett. 110 203001 | Ultrafast Spin-Motion Entanglement and Interferometry with a Single Atom
[36] | Landsman K A, Wu Y, Leung P H, Zhu D, Linke N M, Brown K R, Duan L and Monroe C 2019 Phys. Rev. A 100 022332 | Two-qubit entangling gates within arbitrarily long chains of trapped ions
[37] | Lu Y, Zhang S, Zhang K, Chen W, Shen Y, Zhang J, Zhang J N and Kim K 2019 Nature 572 363 | Global entangling gates on arbitrary ion qubits
[38] | Figgatt C, Ostrander A, Linke N M, Landsman K A, Zhu D, Maslov D and Monroe C 2019 Nature 572 368 | Parallel entangling operations on a universal ion-trap quantum computer
[39] | Zhu S L, Monroe C and Duan L M 2006 Europhys. Lett. 73 1 | Thermalization of quantum systems by finite baths