[1] | Klitzing K V, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494 | New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance
[2] | Thouless D J, Kohmoto M, Nightingale M P and den Nijs M 1982 Phys. Rev. Lett. 49 405 | Quantized Hall Conductance in a Two-Dimensional Periodic Potential
[3] | Tsui D C, Stormer H L and Gossard A C 1982 Phys. Rev. Lett. 48 1559 | Two-Dimensional Magnetotransport in the Extreme Quantum Limit
[4] | Laughlin R B 1983 Phys. Rev. Lett. 50 1395 | Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations
[5] | Haldane F D 1988 Phys. Rev. Lett. 61 2015 | Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly"
[6] | Yu R, Zhang W, Zhang H J, Zhang S C, Dai X and Fang Z 2010 Science 329 61 | Quantized Anomalous Hall Effect in Magnetic Topological Insulators
[7] | Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167 | Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator
[8] | Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801 | Quantum Spin Hall Effect in Graphene
[9] | Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757 | Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells
[10] | Koenig M, Wiedmann S, Bruene C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766 | Quantum Spin Hall Insulator State in HgTe Quantum Wells
[11] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 | Electric Field Effect in Atomically Thin Carbon Films
[12] | Zhu Z, Winkler G W, Wu Q, Li J and Soluyanov A A 2016 Phys. Rev. X 6 031003 | Triple Point Topological Metals
[13] | Bradlyn B, Cano J, Wang Z, Vergniory M G, Felser C, Cava R J and Bernevig B A 2016 Science 353 aaf5037 | Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals
[14] | Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai X and Fang Z 2012 Phys. Rev. B 85 195320 | Dirac semimetal and topological phase transitions in Bi ( , K, Rb)
[15] | Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101 | Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates
[16] | Weng H M, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029 | Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides
[17] | Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495 | Type-II Weyl semimetals
[18] | Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T and Ding H 2015 Phys. Rev. X 5 031013 | Experimental Discovery of Weyl Semimetal TaAs
[19] | Lv B Q, Xu N, Weng H M, Ma J Z, Richard P, Huang X C, Zhao L X, Chen G F, Matt C E, Bisti F, Strocov V N, Mesot J, Fang Z, Dai X, Qian T, Shi M and Ding H 2015 Nat. Phys. 11 724 | Observation of Weyl nodes in TaAs
[20] | Huang X C, Zhao L X, Long Y J, Wang P P, Chen D, Yang Z H, Liang H, Xue M Q, Weng H M, Fang Z, Dai X and Chen G F 2015 Phys. Rev. X 5 031023 | Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs
[21] | Huang S M, Xu S Y, Belopolski I, Lee C C, Chang G Q, Wang B K, Alidoust N, Bian G, Neupane M, Zhang C L, Jia S, Bansil A, Lin H and Hasan M Z 2015 Nat. Commun. 6 7373 | A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class
[22] | Lv B Q, Muff S, Qian T, Song Z D, Nie S M, Xu N, Richard P, Matt C E, Plumb N C, Zhao L X, Chen G F, Fang Z, Dai X, Dil J H, Mesot J, Shi M, Weng H M and Ding H 2015 Phys. Rev. Lett. 115 217601 | Observation of Fermi-Arc Spin Texture in TaAs
[23] | Volovik G E and Zhang K 2017 J. Low Temp. Phys. 189 276 | Lifshitz Transitions, Type-II Dirac and Weyl Fermions, Event Horizon and All That
[24] | Guan S, Yu Z M, Liu Y, Liu G B, Dong L, Lu Y, Yao Y and Yang S A 2017 npj Quantum Mater. 2 23 | Artificial gravity field, astrophysical analogues, and topological phase transitions in strained topological semimetals
[25] | Huang H, Jin K H and Liu F 2018 Phys. Rev. B 98 121110(R) | Black-hole horizon in the Dirac semimetal
[26] | Liu H, Sun J T, Cheng C, Liu F and Meng S 2018 Phys. Rev. Lett. 120 237403 | Photoinduced Nonequilibrium Topological States in Strained Black Phosphorus
[27] | Westström A and Ojanen T 2017 Phys. Rev. X 7 041026 | Designer Curved-Space Geometry for Relativistic Fermions in Weyl Metamaterials
[28] | Hawking S W 1974 Nature 248 30 | Black hole explosions?
[29] | Hartle J B and Hawking S W 1976 Phys. Rev. D 13 2188 | Path-integral derivation of black-hole radiance
[30] | Bardeen J M 1981 Phys. Rev. Lett. 46 382 | Black Holes Do Evaporate Thermally
[31] | Unruh W G 1981 Phys. Rev. Lett. 46 1351 | Experimental Black-Hole Evaporation?
[32] | Unruh W G 1995 Phys. Rev. D 51 2827 | Sonic analogue of black holes and the effects of high frequencies on black hole evaporation
[33] | Garay L J, Anglin J R, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 85 4643 | Sonic Analog of Gravitational Black Holes in Bose-Einstein Condensates
[34] | Lahav O, Itah A, Blumkin A, Gordon C, Rinott S, Zayats A and Steinhauer J 2010 Phys. Rev. Lett. 105 240401 | Realization of a Sonic Black Hole Analog in a Bose-Einstein Condensate
[35] | Garay L J, Anglin J R, Cirac J I and Zoller P 2001 Phys. Rev. A 63 023611 | Sonic black holes in dilute Bose-Einstein condensates
[36] | Steinhauer J 2016 Nat. Phys. 12 959 | Observation of quantum Hawking radiation and its entanglement in an analogue black hole
[37] | Horstmann B, Reznik B, Fagnocchi S and Cirac J I 2010 Phys. Rev. Lett. 104 250403 | Hawking Radiation from an Acoustic Black Hole on an Ion Ring
[38] | Giovanazzi S 2005 Phys. Rev. Lett. 94 061302 | Hawking Radiation in Sonic Black Holes
[39] | Leonhardt U and Piwnicki P 2000 Phys. Rev. Lett. 84 822 | Relativistic Effects of Light in Moving Media with Extremely Low Group Velocity
[40] | Leonhardt U 2002 Nature 415 406 | A laboratory analogue of the event horizon using slow light in an atomic medium
[41] | Schutzhold R and Unruh W G 2005 Phys. Rev. Lett. 95 031301 | Hawking Radiation in an Electromagnetic Waveguide?
[42] | Philbin T G, Kuklewicz C, Robertson S, Hill S, Konig F and Leonhardt U 2008 Science 319 1367 | Fiber-Optical Analog of the Event Horizon
[43] | Belgiorno F, Cacciatori S L, Clerici M, Gorini V, Ortenzi G, Rizzi L, Rubino E, Sala V G and Faccio D 2010 Phys. Rev. Lett. 105 203901 | Hawking Radiation from Ultrashort Laser Pulse Filaments
[44] | Schutzhold R and Unruh W G 2011 Phys. Rev. Lett. 107 149401 | Comment on “Hawking Radiation from Ultrashort Laser Pulse Filaments”
[45] | Elazar M, Fleurov V and Bar-Ad S 2012 Phys. Rev. A 86 063821 | All-optical event horizon in an optical analog of a Laval nozzle
[46] | Liberati S, Prain A and Visser M 2012 Phys. Rev. D 85 084014 | Quantum vacuum radiation in optical glass
[47] | Unruh W G and Schützhold R 2003 Phys. Rev. D 68 024008 | On slow light as a black hole analogue
[48] | Unruh W G and Schützhold R 2012 Phys. Rev. D 86 064006 | Hawking radiation from “phase horizons” in laser filaments?
[49] | Han T, Kribs G D and McElrath B 2003 Phys. Rev. Lett. 90 031601 | Black Hole Evaporation with Separated Fermions
[50] | Corda C 2015 Class. Quantum Grav. 32 195007 | Precise model of Hawking radiation from the tunnelling mechanism
[51] | Kerner R and Mann R B 2008 Class. Quantum Grav. 25 095014 | Fermions tunnelling from black holes
[52] | Ling X, Wang H, Huang S X, Xia F N and Dresselhaus M S 2015 Proc. Natl. Acad. Sci. USA 112 4523 | The renaissance of black phosphorus
[53] | Rodin A S, Carvalho A and Castro Neto A H 2014 Phys. Rev. Lett. 112 176801 | Strain-Induced Gap Modification in Black Phosphorus
[54] | Deng B, Tran V, Xie Y, Jiang H, Li C, Guo Q, Wang X, Tian H, Koester S J, Wang H, Cha J J, Xia Q, Yang L and Xia F 2017 Nat. Commun. 8 14474 | Efficient electrical control of thin-film black phosphorus bandgap
[55] | Kim J, Baik S S, Ryu S H, Sohn Y, Park S, Park B G, Denlinger J, Yi Y, Choi H J and Kim K S 2015 Science 349 723 | Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus
[56] | Kim J, Baik S S, Jung S W, Sohn Y, Ryu S H, Choi H J, Yang B J and Kim K S 2017 Phys. Rev. Lett. 119 226801 | Two-Dimensional Dirac Fermions Protected by Space-Time Inversion Symmetry in Black Phosphorus
[57] | Zhao J, Yu R, Weng H and Fang Z 2016 Phys. Rev. B 94 195104 | Topological node-line semimetal in compressed black phosphorus
[58] | Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372 | Black phosphorus field-effect transistors
[59] | Dutreix C, Stepanov E A and Katsnelson M I 2016 Phys. Rev. B 93 241404 | Laser-induced topological transitions in phosphorene with inversion symmetry
[60] | Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
[61] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | Generalized Gradient Approximation Made Simple
[62] | Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685 | wannier90: A tool for obtaining maximally-localised Wannier functions
[63] | Mostofi A A, Yates J R, Pizzi G, Lee Y S, Souza I, Vanderbilt D and Marzari N 2014 Comput. Phys. Commun. 185 2309 | An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions
[64] | Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419 | Maximally localized Wannier functions: Theory and applications
[65] | Runge E and Gross E K U 1984 Phys. Rev. Lett. 52 997 | Density-Functional Theory for Time-Dependent Systems
[66] | Meng S and Kaxiras E 2008 J. Chem. Phys. 129 054110 | Real-time, local basis-set implementation of time-dependent density functional theory for excited state dynamics simulations
[67] | Volovik G E, The Universe in a Helium Droplet (Oxford: Oxford University Press) |
[68] | Parikh M K 2000 Phys. Rev. Lett. 85 5042 | Hawking Radiation As Tunneling
[69] | Roberts A, Cormode D, Reynolds C, Newhouse-Illige T, LeRoy B J and Sandhu A S 2011 Appl. Phys. Lett. 99 051912 | Response of graphene to femtosecond high-intensity laser irradiation
[70] | Wang Y H, Steinberg H, Jarillo-Herrero P and Gedik N 2013 Science 342 453 | Observation of Floquet-Bloch States on the Surface of a Topological Insulator
[71] | Mahmood F, Chan C K, Alpichshev Z, Gardner D, Lee Y, Lee P A and Gedik N 2016 Nat. Phys. 12 306 | Selective scattering between Floquet–Bloch and Volkov states in a topological insulator
[72] | Wiebe J, Wachowiak A, Meier F, Haude D, Foster T, Morgenstern M and Wiesendanger R 2004 Rev. Sci. Instrum. 75 4871 | A 300 mK ultra-high vacuum scanning tunneling microscope for spin-resolved spectroscopy at high energy resolution
[73] | Liu G, Wang G, Zhu Y, Zhang H, Zhang G, Wang X, Zhou Y, Zhang W, Liu H, Zhao L, Meng J, Dong X, Chen C, Xu Z and Zhou X J 2008 Rev. Sci. Instrum. 79 023105 | Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV