[1] | Luttinger J M 1960 Phys. Rev. 119 1153 | Fermi Surface and Some Simple Equilibrium Properties of a System of Interacting Fermions
[2] | Oshikawa M 2000 Phys. Rev. Lett. 84 3370 | Topological Approach to Luttinger's Theorem and the Fermi Surface of a Kondo Lattice
[3] | Paramekanti A and Vishwanath A 2004 Phys. Rev. B 70 245118 | Extending Luttinger’s theorem to fractionalized phases of matter
[4] | Löhneysen H v, Rosch A, Vojta M and Wölfle P 2007 Rev. Mod. Phys. 79 1015 | Fermi-liquid instabilities at magnetic quantum phase transitions
[5] | Keimer B, Kivelson S A, Norman M R, Uchida S and Zaanen J 2015 Nature 518 179 | From quantum matter to high-temperature superconductivity in copper oxides
[6] | Gu Y, Liu Z, Xie T, Zhang W, Gong D, Hu D, Ma X, Li C, Zhao L, Lin L, Xu Z, Tan G, Chen G, Meng Z Y, Yang Y f, Luo H and Li S 2017 Phys. Rev. Lett. 119 157001 | Unified Phase Diagram for Iron-Based Superconductors
[7] | Wu W, Cheng J, Matsubayashi K, Kong P, Lin F, Jin C, Wang N, Uwatoko Y and Luo J 2014 Nat. Commun. 5 5508 | Superconductivity in the vicinity of antiferromagnetic order in CrAs
[8] | Cheng J and Luo J 2017 J. Phys.: Condens. Matter 29 383003 | Pressure-induced superconductivity in CrAs and MnP
[9] | Matsuda M, Lin F K, Yu R, Cheng J G, Wu W, Sun J P, Zhang J H, Sun P J, Matsubayashi K, Miyake T, Kato T, Yan J Q, Stone M B, Si Q, Luo J L and Uwatoko Y 2018 Phys. Rev. X 8 031017 | Evolution of Magnetic Double Helix and Quantum Criticality near a Dome of Superconductivity in CrAs
[10] | Stewart G R 2001 Rev. Mod. Phys. 73 797 | Non-Fermi-liquid behavior in - and -electron metals
[11] | Custers J, Gegenwart P, Wilhelm H, Neumaier K, Tokiwa Y, Trovarelli O, Geibel C, Steglich F, Pepin C and Coleman P 2003 Nature 424 524 | The break-up of heavy electrons at a quantum critical point
[12] | Si Q and Steglich F 2010 Science 329 1161 | Heavy Fermions and Quantum Phase Transitions
[13] | Steppke A, Küchler R, Lausberg S, Lengyel E, Steinke L, Borth R, Lühmann T, Krellner C, Nicklas M, Geibel C, Steglich F and Brando M 2013 Science 339 933 | Ferromagnetic Quantum Critical Point in the Heavy-Fermion Metal YbNi4(P1-xAsx)2
[14] | Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80 | Correlated insulator behaviour at half-filling in magic-angle graphene superlattices
[15] | Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 | Unconventional superconductivity in magic-angle graphene superlattices
[16] | Cao Y, Chowdhury D, Rodan-Legrain D, Rubies-Bigordà O, Watanabe K, Taniguchi T, Senthil T and Jarillo-Herrero P 2019 arXiv:1901.03710 [cond-mat.str-el] | Strange metal in magic-angle graphene with near Planckian dissipation
[17] | Shen C, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Chu Y, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D and Zhang G 2019 arXiv:1903.06952 [cond-mat.supr-con] | Observation of superconductivity with Tc onset at 12K in electrically tunable twisted double bilayer graphene
[18] | Senthil T, Sachdev S and Vojta M 2003 Phys. Rev. Lett. 90 216403 | Fractionalized Fermi Liquids
[19] | Punk M, Allais A and Sachdev S 2015 Proc. Natl. Acad. Sci. USA 112 9552 | Quantum dimer model for the pseudogap metal
[20] | Feldmeier J, Huber S and Punk M 2018 Phys. Rev. Lett. 120 187001 | Exact Solution of a Two-Species Quantum Dimer Model for Pseudogap Metals
[21] | Maldacena J and Stanford D 2016 Phys. Rev. D 94 106002 | Remarks on the Sachdev-Ye-Kitaev model
[22] | Hofmann J S, Assaad F F and Grover T 2019 Phys. Rev. B 100 035118 | Fractionalized Fermi liquid in a frustrated Kondo lattice model
[23] | Pan G, Wang Y and Meng Z Y 2020 arXiv:2001.06586 [cond-mat.str-el] | Self-tuned Quantum Criticality and Non-Fermi-liquid in a Yukawa-SYK Model: a Quantum Monte Carlo Study
[24] | Nandkishore R, Metlitski M A and Senthil T 2012 Phys. Rev. B 86 045128 | Orthogonal metals: The simplest non-Fermi liquids
[25] | Rüegg A, Huber S D and Sigrist M 2010 Phys. Rev. B 81 155118 | -slave-spin theory for strongly correlated fermions
[26] | Gazit S, Assaad F F and Sachdev S 2019 arXiv:1906.11250 [cond-mat.str-el] | Fermi-surface reconstruction without symmetry breaking
[27] | Huijse L and Sachdev S 2011 Phys. Rev. D 84 026001 | Fermi surfaces and gauge-gravity duality
[28] | Senthil T and Motrunich O 2002 Phys. Rev. B 66 205104 | Microscopic models for fractionalized phases in strongly correlated systems
[29] | Kaul R K 2012 Physics 5 82 | Metals Get an Awkward Cousin
[30] | Kogut J B 1979 Rev. Mod. Phys. 51 659 | An introduction to lattice gauge theory and spin systems
[31] | Fradkin E 2013 Field Theories of Condensed Matter Physics 2nd edn (Cambridge University Press) |
[32] | Xu X Y, Liu Z H, Pan G, Qi Y, Sun K and Meng Z Y 2019 J. Phys.: Condens. Matter 31 463001 | Revealing fermionic quantum criticality from new Monte Carlo techniques
[33] | Xu X Y, Qi Y, Zhang L, Assaad F F, Xu C and Meng Z Y 2019 Phys. Rev. X 9 021022 | Monte Carlo Study of Lattice Compact Quantum Electrodynamics with Fermionic Matter: The Parent State of Quantum Phases
[34] | Liu Y, Wang W, Sun K and Meng Z Y 2020 Phys. Rev. B 101 064308 | Designer Monte Carlo simulation for the Gross-Neveu-Yukawa transition
[35] | Hohenadler M and Assaad F F 2018 Phys. Rev. Lett. 121 086601 | Fractionalized Metal in a Falicov-Kimball Model
[36] | Hohenadler M and Assaad F F 2019 Phys. Rev. B 100 125133 | Orthogonal metal in the Hubbard model with liberated slave spins
[37] | Xu X Y, Sun K, Schattner Y, Berg E and Meng Z Y 2017 Phys. Rev. X 7 031058 | Non-Fermi Liquid at ( ) Ferromagnetic Quantum Critical Point
[38] | Liu Z H, Xu X Y, Qi Y, Sun K and Meng Z Y 2018 Phys. Rev. B 98 045116 | Itinerant quantum critical point with frustration and a non-Fermi liquid
[39] | Liu Z H, Pan G, Xu X Y, Sun K and Meng Z Y 2019 Proc. Natl. Acad. Sci. USA 116 16760 | Itinerant quantum critical point with fermion pockets and hotspots
[40] | Hirsch J E 1985 Phys. Rev. B 31 4403 | Two-dimensional Hubbard model: Numerical simulation study
[41] | He Y Y, Wu H Q, You Y Z, Xu C, Meng Z Y and Lu Z Y 2016 Phys. Rev. B 93 115150 | Bona fide interaction-driven topological phase transition in correlated symmetry-protected topological states
[42] | Xu X Y, Beach K S D, Sun K, Assaad F F and Meng Z Y 2017 Phys. Rev. B 95 085110 | Topological phase transitions with SO(4) symmetry in (2+1)D interacting Dirac fermions
[43] | Assaad F F and Grover T 2016 Phys. Rev. X 6 041049 | Simple Fermionic Model of Deconfined Phases and Phase Transitions
[44] | Gazit S, Assaad F F, Sachdev S, Vishwanath A and Wang C 2018 Proc. Natl. Acad. Sci. USA 115 E6987 | Confinement transition of Z 2 gauge theories coupled to massless fermions: Emergent quantum chromodynamics and SO (5) symmetry
[45] | Gazit S, Randeria M and Vishwanath A 2017 Nat. Phys. 13 484 | Emergent Dirac fermions and broken symmetries in confined and deconfined phases of Z2 gauge theories