[1] | Barredo D, de S, Lienhard V, Lahaye T and Browaeys A 2016 Science 354 1021 | An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays
[2] | Endres M, Bernien H, Keesling A, Levine H, Anschuetz E R, Krajenbrink A, Senko C, Vuletic V, Greiner M and Lukin M D 2016 Science 354 1024 | Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries
[3] | Kim H, Lee W, Lee H, Jo H, Song Y and Ahn J 2016 Nat. Commun. 7 13317 | In situ single-atom array synthesis using dynamic holographic optical tweezers
[4] | Lee W, Kim H and Ahn J 2016 Opt. Express 24 9816 | Three-dimensional rearrangement of single atoms using actively controlled optical microtraps
[5] | Robens C, Zopes J, Alt W, Brakhane S, Meschede D and Alberti A 2017 Phys. Rev. Lett. 118 065302 | Low-Entropy States of Neutral Atoms in Polarization-Synthesized Optical Lattices
[6] | Barredo D, Lienhard V, de S, Lahaye T and Browaeys A 2018 Nature 561 79 | Synthetic three-dimensional atomic structures assembled atom by atom
[7] | Kumar A, Wu T Y, Giraldo F and Weiss D S 2018 Nature 561 83 | Sorting ultracold atoms in a three-dimensional optical lattice in a realization of Maxwell’s demon
[8] | Brown M O, Thiele T, Kiehl C, Hsu T W and Regal C A 2019 Phys. Rev. X 9 011057 | Gray-Molasses Optical-Tweezer Loading: Controlling Collisions for Scaling Atom-Array Assembly
[9] | Browaeys A, Barredo D and Lahaye T 2016 J. Phys. B: At. Mol. Opt. Phys. 49 152001 | Experimental investigations of dipole–dipole interactions between a few Rydberg atoms
[10] | Saffman M, Walker T G and Molmer K 2010 Rev. Mod. Phys. 82 2313 | Quantum information with Rydberg atoms
[11] | Liu L R, Hood J D, Yu Y, Zhang J T, Hutzler N R, Rosenband T and Ni K K 2018 Science 360 900 | A quantum dipolar spin liquid
[12] | Anderegg L, Cheuk L W, Bao Y, Burchesky S, Ketterle W, Ni K K and Doyle J M 2019 Science 365 1156 | An optical tweezer array of ultracold molecules
[13] | Kaufman A M, Lester B J, Foss-Feig M, Wall M L, Rey A M and Regal C A 2015 Nature 527 208 | Entangling two transportable neutral atoms via local spin exchange
[14] | Lester B J, Lin Y, Brown M O, Kaufman A M, Ball R J, Knill E, Rey A M and Regal C A 2018 Phys. Rev. Lett. 120 193602 | Measurement-Based Entanglement of Noninteracting Bosonic Atoms
[15] | Ospelkaus C, Langer C E, Amini J M, Brown K R, Leibfried D and Wineland D J 2008 Phys. Rev. Lett. 101 90502 | Trapped-Ion Quantum Logic Gates Based on Oscillating Magnetic Fields
[16] | Ospelkaus C, Warring U, Colombe Y, Brown K R, Amini J M, Leibfried D and Wineland D J 2011 Nature 476 181 | Microwave quantum logic gates for trapped ions
[17] | Ding S, Loh H, Hablutzel R, Gao M, Maslennikov G and Matsukevich D 2014 Phys. Rev. Lett. 113 73002 | Microwave Control of Trapped-Ion Motion Assisted by a Running Optical Lattice
[18] | Ballance C J, Harty T P, Linke N M, Sepiol M A and Lucas D M 2016 Phys. Rev. Lett. 117 060504 | High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits
[19] | Gaebler J P, Tan T R, Lin Y, Wan Y, Bowler R, Keith A C, Glancy S, Coakley K, Knill E, Leibfried D and Wineland D J 2016 Phys. Rev. Lett. 117 060505 | High-Fidelity Universal Gate Set for Ion Qubits
[20] | Srinivas R, Burd S C, Sutherland R T, Wilson A C, Wineland D J, Leibfried D, Allcock D T C and Slichter D H 2019 Phys. Rev. Lett. 122 163201 | Trapped-Ion Spin-Motion Coupling with Microwaves and a Near-Motional Oscillating Magnetic Field Gradient
[21] | Förster L, Karski M, Choi J M, Steffen A, Alt W, Meschede D, Widera A, Montano E, Lee J H, Rakreungdet W and Jessen P S 2009 Phys. Rev. Lett. 103 233001 | Microwave Control of Atomic Motion in Optical Lattices
[22] | Thompson J D, Tiecke T G, Zibrov A S, Vuletić V and Lukin M D 2013 Phys. Rev. Lett. 110 133001 | Coherence and Raman Sideband Cooling of a Single Atom in an Optical Tweezer
[23] | Li X, Corcovilos T A, Wang Y and Weiss D S 2012 Phys. Rev. Lett. 108 103001 | 3D Projection Sideband Cooling
[24] | Belmechri N, Förster L, Alt W, Widera A, Meschede D and Alberti A 2013 J. Phys. B: At. Mol. Opt. Phys. 46 104006 | Microwave control of atomic motional states in a spin-dependent optical lattice
[25] | Wu T Y, Kumar A, Giraldo F and Weiss D S 2019 Nat. Phys. 15 538 | Stern–Gerlach detection of neutral-atom qubits in a state-dependent optical lattice
[26] | Albrecht B, Meng Y, Clausen C, Dareau A, Schneeweiss P and Rauschenbeutel A 2016 Phys. Rev. A 94 61401 | Fictitious magnetic-field gradients in optical microtraps as an experimental tool for interrogating and manipulating cold atoms
[27] | Dareau A, Meng Y, Schneeweiss P and Rauschenbeutel A 2018 Phys. Rev. Lett. 121 253603 | Observation of Ultrastrong Spin-Motion Coupling for Cold Atoms in Optical Microtraps
[28] | Wang K P, He X D, Guo R J, Xu P, Sheng C, Zhuang J, Xiong Z Y, Liu M, Wang J and Zhan M S 2019 Phys. Rev. A 100 63429 | Preparation of a heteronuclear two-atom system in the three-dimensional ground state in an optical tweezer
[29] | Kaufman A M, Lester B J and Regal C A 2012 Phys. Rev. X 2 041014 | Cooling a Single Atom in an Optical Tweezer to Its Quantum Ground State
[30] | Le F, Schneeweiss P and Rauschenbeutel A 2013 Eur. Phys. J. D 67 92 | Dynamical polarizability of atoms in arbitrary light fields: general theory and application to cesium
[31] | See the Supplementary Materials for more details |
[32] | Magesan E, Gambetta J M and Emerson J 2012 Phys. Rev. A 85 042311 | Characterizing quantum gates via randomized benchmarking
[33] | Knill E, Leibfried D, Reichle R, Britton J, Blakestad R B, Jost J D, Langer C, Ozeri R, Seidelin S and Wineland D J 2008 Phys. Rev. A 77 12307 | Randomized benchmarking of quantum gates
[34] | Sheng C, He X D, Xu P, Guo R J, Wang K P, Xiong Z Y, Liu M, Wang J and Zhan M S 2018 Phys. Rev. Lett. 121 240501 | High-Fidelity Single-Qubit Gates on Neutral Atoms in a Two-Dimensional Magic-Intensity Optical Dipole Trap Array
[35] | Liu L R, Hood J D, Yu Y, Zhang J T, Wang K, Lin Y W, Rosenband T and Ni K K 2019 Phys. Rev. X 9 021039 | Molecular Assembly of Ground-State Cooled Single Atoms
[36] | Blume D 2012 Rep. Prog. Phys. 75 46401 | Few-body physics with ultracold atomic and molecular systems in traps
[37] | Greene C H, Giannakeas P and Pérez-Rìos J 2017 Rev. Mod. Phys. 89 35006 | Universal few-body physics and cluster formation
[38] | Sowióski T and García-March Á M 2019 Rep. Prog. Phys. 82 104401 | One-dimensional mixtures of several ultracold atoms: a review
[39] | Caldwell L and Tarbutt M R 2020 Phys. Rev. Res. 2 013251 | Sideband cooling of molecules in optical traps