[1] | Zhan Q 2009 Adv. Opt. Photon. 1 1 | Cylindrical vector beams: from mathematical concepts to applications
[2] | Zhan Q 2004 Opt. Express 12 3377 | Trapping metallic Rayleigh particles with radial polarization
[3] | Wang X L, Chen J, Li Y, Ding J, Guo C S and Wang H T 2010 Phys. Rev. Lett. 105 253602 | Optical orbital angular momentum from the curl of polarization
[4] | Li H, Wang C, Tang M and Li X 2020 Opt. Express 28 18607 | Controlled negative energy flow in the focus of a radial polarized optical beam
[5] | Hnatovsky C, Shvedov V, Krolikowski W and Rode A 2011 Phys. Rev. Lett. 106 123901 | Revealing Local Field Structure of Focused Ultrashort Pulses
[6] | Novotny L, Beversluis M R, Youngworth K S and Brown T G 2001 Phys. Rev. Lett. 86 5251 | Longitudinal Field Modes Probed by Single Molecules
[7] | Bouhelier A, Beversluis M, Hartschuh A and Novotny L 2003 Phys. Rev. Lett. 90 013903 | Near-Field Second-Harmonic Generation Induced by Local Field Enhancement
[8] | Li S M, Li Y, Wang X L, Kong L J, Lou K, Tu C, Tian Y and Wang H T 2012 Sci. Rep. 2 1007 | Taming the Collapse of Optical Fields
[9] | Barreiro J T, Wei T C and Kwiat P G 2010 Phys. Rev. Lett. 105 030407 | Remote Preparation of Single-Photon “Hybrid” Entangled and Vector-Polarization States
[10] | Ciattoni A, Crosignani B, Porto P D and Yariv A 2005 Phys. Rev. Lett. 94 073902 | Azimuthally Polarized Spatial Dark Solitons: Exact Solutions of Maxwell's Equations in a Kerr Medium
[11] | Xie X, Chen Y, Yang K and Zhou J 2014 Phys. Rev. Lett. 113 263901 | Harnessing the Point-Spread Function for High-Resolution Far-Field Optical Microscopy
[12] | Liu S, Zhao J, Li P, Wei B and Guo Z 2020 Opt. Lett. 45 575 | Tightly autofocusing beams: an effective enhancement of longitudinally polarized fields
[13] | Lerman G M, Stern L and Levy U 2010 Opt. Express 18 27650 | Generation and tight focusing of hybridly polarized vector beams
[14] | Wang X L, Li Y, Chen J, Guo C S, Ding J and Wang H T 2010 Opt. Express 18 10786 | A new type of vector fields with hybrid states of polarization
[15] | Beckley A M, Brown T G and Alonso M A 2010 Opt. Express 18 10777 | Full Poincaré beams
[16] | Milione G, Sztul H, Nolan D and Alfano R 2011 Phys. Rev. Lett. 107 053601 | Higher-Order Poincaré Sphere, Stokes Parameters, and the Angular Momentum of Light
[17] | Bing G, Yang P, Rui G, Xu D, Zhan Q and Cui Y 2014 Appl. Phys. B 117 915 | Polarization evolution characteristics of focused hybridly polarized vector fields
[18] | Si Y, Kong L J, Zhang Y, Ren Z C, Pan Y, Tu C, Li Y and Wang H T 2017 Chin. Phys. Lett. 34 044204 | Spatial-Variant Geometric Phase of Hybrid-Polarized Vector Optical Fields
[19] | Bandres M A, Gutiérrez-Vega J C and Chávez-Cerda S 2004 Opt. Lett. 29 44 | Parabolic nondiffracting optical wave fields
[20] | Zhang P, Hu Y, Li T, Cannan D, Yin X, Morandotti R, Chen Z and Zhang X 2012 Phys. Rev. Lett. 109 193901 | Nonparaxial Mathieu and Weber Accelerating Beams
[21] | Pan Y, Li Y, Ren Z C, Si Y, Tu C and Wang H T 2014 Phys. Rev. A 89 035801 | Parabolic-symmetry vector optical fields and their tightly focusing properties
[22] | Wang X L, Ding J, Ni W J, Guo C S and Wang H T 2007 Opt. Lett. 32 3549 | Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement
[23] | Carter W H and Aburdene M F 1987 J. Opt. Soc. Am. A 4 1949 | Focal shift in Laguerre–Gaussian beams
[24] | Greene P and Hall D 1999 Opt. Express 4 411 | Focal shift in vector beams
[25] | Pu J and Lü B 2001 J. Opt. Soc. Am. A 18 2760 | Focal shifts in focused nonuniformly polarized beams
[26] | Hernandezaranda R I and Gutiérrezvega J C 2008 Opt. Express 16 5838 | Focal shift in vector Mathieu-Gauss beams
[27] | Zhang K K, Luo H L and Wen S C 2010 Chin. Phys. Lett. 27 077801 | Focal Shift of Paraxial Gaussian Beams in a Left-Handed Material Slab Lens
[28] | Gao X, Gao M, Zhan Q, Li J, Guo H, Jian W and Zhuang S 2011 Optik 122 671 | Focal shift in radially polarized hollow Gaussian beam
[29] | Ren Z C, Qian S X, Tu C H, Li Y N and Wang H T 2015 Opt. Commun. 334 156 | Focal shift in tightly focused Laguerre–Gaussian beams
[30] | Li J, Zhang J and Li J 2019 Opt. Commun. 439 284 | Optical twists and transverse focal shift in a strongly focused, circularly polarized vortex field
[31] | Goodman J W 2017 Introduction to Fourier Optics 4th edn (New York: W. H. Freeman) |
[32] | Richards B and Wolf E 1959 Proc. R. Soc. A 253 358 | Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system
[33] | Youngworth K S and Brown T G 2000 Opt. Express 7 77 | Focusing of high numerical aperture cylindrical-vector beams