Active Thermal Wave Cloak

Funds: Supported by the National Natural Science Foundation of China (Grant Nos. 11725521 and 12035004), and the Science and Technology Commission of Shanghai Municipality (Grant No. 20JC1414700).
  • Received Date: October 01, 2020
  • Published Date: November 30, 2020
  • Active metamaterials have shown huge advantages to control electromagnetic and acoustic waves. However, how to use active metamaterials to control thermal waves has not been explored, though thermal waves are significant in various fields. To address the problem, here we report an active scheme for thermal wave cloaks. The thermal waves are based on conduction and convection, which are dominated by the Fourier and Darcy laws, respectively. By calculating the propagation of thermal waves in a free space, we can derive the global temperature and pressure distributions. We then apply these calculation results to actively control the boundary temperature and pressure, and active thermal wave cloaks can be obtained. Compared with existing passive schemes to control thermal waves, the present active scheme is more flexible for switching on/off and changing geometries. This work provides active and controllable components to thermal wave cloaks, which can be further used to design more active thermal wave metamaterials.
  • Article Text

  • [1]
    Huang J P 2020 Theoretical Thermotics: Transformation Thermotics and Extended Theories for Thermal Metamaterials Berlin: Springer

    Google Scholar

    [2]
    Fan C Z, Gao Y and Huang J P 2008 Appl. Phys. Lett. 92 251907 doi: 10.1063/1.2951600

    CrossRef Google Scholar

    [3]
    Chen T Y, Weng C N and Chen J S 2008 Appl. Phys. Lett. 93 114103 doi: 10.1063/1.2988181

    CrossRef Google Scholar

    [4]
    Guenneau S, Petiteau D, Zerrad M, Amra C and Puvirajesinghe T 2015 AIP Adv. 5 053404 doi: 10.1063/1.4917492

    CrossRef Google Scholar

    [5]
    Dai G L, Shang J and Huang J P 2018 Phys. Rev. E 97 022129 doi: 10.1103/PhysRevE.97.022129

    CrossRef Google Scholar

    [6]
    Li Y, Zhu K J, Peng Y G, Li W, Yang T Z, Xu H X, Chen H, Zhu X F, Fan S H and Qiu C W 2019 Nat. Mater. 18 48 doi: 10.1038/s41563-018-0239-6

    CrossRef Google Scholar

    [7]
    Yang F B, Xu L J and Huang J P 2019 ES Energy & Environ. 6 45 doi: 10.30919/esee8c329

    CrossRef Google Scholar

    [8]
    Yeung W S, Mai V P and Yang R J 2020 Phys. Rev. Appl. 13 064030 doi: 10.1103/PhysRevApplied.13.064030

    CrossRef Google Scholar

    [9]
    Xu L J and Huang J P 2020 Sci. Chin. Phys. Mech. & Astron. 63 228711 doi: 10.1007/s11433-019-1430-x

    CrossRef Google Scholar

    [10]
    Li Y, Bai X, Yang T Z, Luo H L and Qiu C W 2018 Nat. Commun. 9 273 doi: 10.1038/s41467-017-02678-8

    CrossRef Google Scholar

    [11]
    Xu L J and Huang J P 2019 Phys. Rev. Appl. 12 044048 doi: 10.1103/PhysRevApplied.12.044048

    CrossRef Google Scholar

    [12]
    Peng Y G, Li Y, Cao P C, Zhu X F and Qiu C W 2020 Adv. Funct. Mater. 30 2002061 doi: 10.1002/adfm.202002061

    CrossRef Google Scholar

    [13]
    Xu L J, Dai G L and Huang J P 2020 Phys. Rev. Appl. 13 024063 doi: 10.1103/PhysRevApplied.13.024063

    CrossRef Google Scholar

    [14]
    Xu L J, Yang S, Dai G L and Huang J P 2020 ES Energy & Environ. 7 65 doi: 10.30919/esee8c372

    CrossRef Google Scholar

    [15]
    Wang J, Yang F B, Xu L J and Huang J P 2020 Phys. Rev. Appl. 14 014008 doi: 10.1103/PhysRevApplied.14.014008

    CrossRef Google Scholar

    [16]
    Yang S, Xu L J, Dai G L and Huang J P 2020 J. Appl. Phys. 128 095102 doi: 10.1063/5.0013270

    CrossRef Google Scholar

    [17]
    Farhat M, Chen P Y, Bagci H, Amra C, Guenneau S and Alù A 2015 Sci. Rep. 5 9876 doi: 10.1038/srep09876

    CrossRef Google Scholar

    [18]
    Farhat M, Guenneau S, Chen P Y, Alù A and Salama K N 2019 Phys. Rev. Appl. 11 044089 doi: 10.1103/PhysRevApplied.11.044089

    CrossRef Google Scholar

    [19]
    Xu L J and Huang J P 2020 Int. J. Heat Mass Transfer 159 120133 doi: 10.1016/j.ijheatmasstransfer.2020.120133

    CrossRef Google Scholar

    [20]
    Vasquez F G, Milton G W and Onofrei D 2009 Phys. Rev. Lett. 103 073901 doi: 10.1103/PhysRevLett.103.073901

    CrossRef Google Scholar

    [21]
    Selvanayagam M and Eleftheriades G V 2013 Phys. Rev. X 3 041011 doi: 10.1103/PhysRevX.3.041011

    CrossRef Google Scholar

    [22]
    Kord A, Sounas D L and Alù A 2018 Phys. Rev. Appl. 10 054040 doi: 10.1103/PhysRevApplied.10.054040

    CrossRef Google Scholar

    [23]
    Vasquez F G, Milton G W and Onofrei D 2011 Wave Motion 48 515 doi: 10.1016/j.wavemoti.2011.03.005

    CrossRef Google Scholar

    [24]
    Ning L, Wang Y Z and Wang Y S 2020 Int. J. Solids Struct. 202 126 doi: 10.1016/j.ijsolstr.2020.06.009

    CrossRef Google Scholar

    [25]
    Kerferd B, Eggler D, Karimi M and Kessissoglou N 2020 J. Sound Vib. 479 115400 doi: 10.1016/j.jsv.2020.115400

    CrossRef Google Scholar

    [26]
    Urzhumov Y A and Smith D R 2012 Phys. Rev. E 86 056313 doi: 10.1103/PhysRevE.86.056313

    CrossRef Google Scholar

    [27]
    Culver D and Urzhumov Y 2017 Phys. Rev. E 96 063107 doi: 10.1103/PhysRevE.96.063107

    CrossRef Google Scholar

    [28]
    Ma Q, Mei Z L, Zhu S K, Jin T Y and Cui T J 2013 Phys. Rev. Lett. 111 173901 doi: 10.1103/PhysRevLett.111.173901

    CrossRef Google Scholar

    [29]
    Lan C W, Bi K, Gao Z H, Li B and Zhou J 2016 Appl. Phys. Lett. 109 201903 doi: 10.1063/1.4966950

    CrossRef Google Scholar

    [30]
    Chen T H, Zheng B, Yang Y H, Shen L, Wang Z J, Gao F, Li E P, Luo Y, Cui T J and Chen H S 2019 Light: Sci. & Appl. 8 30 doi: 10.1038/s41377-019-0141-2

    CrossRef Google Scholar

    [31]
    Mach-Batlle R, Parra A, Laut S, Del-Valle N, Navau C and Sanchez A 2018 Phys. Rev. Appl. 9 034007 doi: 10.1103/PhysRevApplied.9.034007

    CrossRef Google Scholar

    [32]
    Jiang W, Ma Y G and He S L 2018 Phys. Rev. Appl. 9 054041 doi: 10.1103/PhysRevApplied.9.054041

    CrossRef Google Scholar

    [33]
    Dai X and Jiang J C 2020 AIP Adv. 10 025211 doi: 10.1063/1.5134514

    CrossRef Google Scholar

    [34]
    Nguyen D M, Xu H Y, Zhang Y M and Zhang B L 2015 Appl. Phys. Lett. 107 121901 doi: 10.1063/1.4930989

    CrossRef Google Scholar

    [35]
    Guo J and Qu Z G 2018 Int. J. Heat Mass Transfer 127 1212 doi: 10.1016/j.ijheatmasstransfer.2018.07.035

    CrossRef Google Scholar

    [36]
    Xu L J, Yang S and Huang J P 2019 Phys. Rev. E 100 062108 doi: 10.1103/PhysRevE.100.062108

    CrossRef Google Scholar

    [37]
    Xu L J, Yang S and Huang J P 2020 Europhys. Lett. 131 24002 doi: 10.1209/0295-5075/131/24002

    CrossRef Google Scholar

    [38]
    Li Y, Peng Y G, Han L, Miri M A, Li W, Xiao M, Zhu X F, Zhao J L, Alù A, Fan S H and Qiu C W 2019 Science 364 170 doi: 10.1126/science.aaw6259

    CrossRef Google Scholar

    [39]
    Cao P C, Li Y, Peng Y G, Qiu C W and Zhu X F 2020 ES Energy & Environ. 7 48

    Google Scholar

    [40]
    Xu L J and Huang J P 2020 Chin. Phys. Lett. 37 080502 doi: 10.1088/0256-307X/37/8/080502

    CrossRef Google Scholar

    [41]
    Xu L J and Huang J P 2020 Appl. Phys. Lett. 117 011905 doi: 10.1063/5.0013152

    CrossRef Google Scholar

    [42]
    Bear J and Corapcioglu M Y 1984 Fundamentals of Transport Phenomena in Porous Media Berlin: Springer

    Google Scholar

    [43]
    Urzhumov Y A and Smith D R 2011 Phys. Rev. Lett. 107 074501 doi: 10.1103/PhysRevLett.107.074501

    CrossRef Google Scholar

    [44]
    Park J, Youn J R and Song Y S 2019 Phys. Rev. Lett. 123 074502 doi: 10.1103/PhysRevLett.123.074502

    CrossRef Google Scholar

    [45]
    Park J, Youn J R and Song Y S 2019 Phys. Rev. Appl. 12 061002 doi: 10.1103/PhysRevApplied.12.061002

    CrossRef Google Scholar

    [46]
    Joseph D D and Preziosi L 1989 Rev. Mod. Phys. 61 41 doi: 10.1103/RevModPhys.61.41

    CrossRef Google Scholar

    [47]
    Nie B D and Cao B Y 2019 Int. J. Heat Mass Transfer 135 974 doi: 10.1016/j.ijheatmasstransfer.2019.02.026

    CrossRef Google Scholar

    [48]
    Gandolfi M, Benetti G, Glorieux C, Giannetti C and Banfi F 2019 Int. J. Heat Mass Transfer 143 118553 doi: 10.1016/j.ijheatmasstransfer.2019.118553

    CrossRef Google Scholar

    [49]
    Simoncelli M, Marzari N and Cepellotti A 2020 Phys. Rev. X 10 011019 doi: 10.1103/PhysRevX.10.011019

    CrossRef Google Scholar

    [50]
    Domenico M D, Jou D and Sellitto A 2020 Int. J. Heat Mass Transfer 156 119888 doi: 10.1016/j.ijheatmasstransfer.2020.119888

    CrossRef Google Scholar

    [51]
    Hu R, Iwamoto S, Feng L, Ju S H, Hu S Q, Ohnishi M, Nagai N, Hirakawa K and Shiomi J 2020 Phys. Rev. X 10 021050 doi: 10.1103/PhysRevX.10.021050

    CrossRef Google Scholar

    [52]
    Orth T, Netzelmann U and Pelzl J 1988 Appl. Phys. Lett. 53 1979 doi: 10.1063/1.100338

    CrossRef Google Scholar

    [53]
    Busse G, Wu D and Karpen W 1992 J. Appl. Phys. 71 3962 doi: 10.1063/1.351366

    CrossRef Google Scholar

    [54]
    Mulaveesala R and Tuli S 2006 Appl. Phys. Lett. 89 191913 doi: 10.1063/1.2382738

    CrossRef Google Scholar

    [55]
    Mulaveesala R and Tuli S 2008 AIP Conf. Proc. 1004 15 doi: 10.1063/1.2927545

    CrossRef Google Scholar

    [56]
    Tuli S and Chatterjee K 2012 AIP Conf. Proc. 1430 523 doi: 10.1063/1.4716271

    CrossRef Google Scholar

    [57]
    Sha W, Zhao Y T, Gao L, Xiao M and Hu R 2020 J. Appl. Phys. 128 045106 doi: 10.1063/5.0007354

    CrossRef Google Scholar

    [58]
    Hu R, Huang S Y, Wang M, Luo X B, Shiomi J and Qiu C W 2019 Adv. Mater. 31 1807849 doi: 10.1002/adma.201807849

    CrossRef Google Scholar

    [59]
    Hu R, Zhou S L, Li Y, Lei D Y, Luo X B and Qiu C W 2018 Adv. Mater. 30 1707237 doi: 10.1002/adma.201707237

    CrossRef Google Scholar

    [60]
    Hu R, Huang S Y, Wang M, Zhou L L, Peng X Y and Luo X B 2018 Phys. Rev. Appl. 10 054032 doi: 10.1103/PhysRevApplied.10.054032

    CrossRef Google Scholar

Catalog

    Article views (754) PDF downloads (647) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return