[1] | Radisavljevic B et al. 2011 Nat. Nanotechnol. 6 147 | Single-layer MoS2 transistors
[2] | Hsu S A et al. 2013 Proc. IEEE 101 1638 | Large-Area 2-D Electronics: Materials, Technology, and Devices
[3] | Fiori G et al. 2014 Nat. Nanotechnol. 9 768 | Electronics based on two-dimensional materials
[4] | Wang H et al. 2012 Nano Lett. 12 4674 | Integrated Circuits Based on Bilayer MoS 2 Transistors
[5] | Fang H et al. 2012 Nano Lett. 12 3788 | High-Performance Single Layered WSe 2 p-FETs with Chemically Doped Contacts
[6] | Das S et al. 2013 Nano Lett. 13 100 | High Performance Multilayer MoS 2 Transistors with Scandium Contacts
[7] | Zhou C et al. 2016 Adv. Funct. Mater. 26 4223 | Carrier Type Control of WSe 2 Field-Effect Transistors by Thickness Modulation and MoO 3 Layer Doping
[8] | Sahin H et al. 2013 Phys. Rev. B 87 165409 | Anomalous Raman spectra and thickness-dependent electronic properties of WSe
[9] | Yamamoto M et al. 2015 Nano Lett. 15 2067 | Self-Limiting Layer-by-Layer Oxidation of Atomically Thin WSe 2
[10] | Yamamoto M et al. 2016 Nano Lett. 16 2720 | Self-Limiting Oxides on WSe 2 as Controlled Surface Acceptors and Low-Resistance Hole Contacts
[11] | Li H et al. 2014 Acc. Chem. Res. 47 1067 | Preparation and Applications of Mechanically Exfoliated Single-Layer and Multilayer MoS 2 and WSe 2 Nanosheets
[12] | Lopez-Sanchez O et al. 2013 Nat. Nanotechnol. 8 497 | Ultrasensitive photodetectors based on monolayer MoS2
[13] | Yin Z et al. 2012 ACS Nano 6 74 | Single-Layer MoS 2 Phototransistors
[14] | Zhao W et al. 2013 ACS Nano 7 791 | Evolution of Electronic Structure in Atomically Thin Sheets of WS 2 and WSe 2
[15] | del Corro E et al. 2014 ACS Nano 8 9629 | Excited Excitonic States in 1L, 2L, 3L, and Bulk WSe 2 Observed by Resonant Raman Spectroscopy
[16] | Kang D H et al. 2015 ACS Nano 9 1099 | Controllable Nondegenerate p-Type Doping of Tungsten Diselenide by Octadecyltrichlorosilane
[17] | Movva H C et al. 2015 ACS Nano 9 10402 | High-Mobility Holes in Dual-Gated WSe 2 Field-Effect Transistors
[18] | Kumar A and Ahluwalia P K 2012 Eur. Phys. J. B 85 186 | Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: new direct band gap semiconductors
[19] | Suriyasena Liyanage L et al. 2014 Nano Lett. 14 1884 | VLSI-Compatible Carbon Nanotube Doping Technique with Low Work-Function Metal Oxides
[20] | Chen K et al. 2014 APL Mater. 2 092504 | Air stable n-doping of WSe2 by silicon nitride thin films with tunable fixed charge density
[21] | Liu Y et al. 2015 Nano Lett. 15 4979 | Thermal Oxidation of WSe 2 Nanosheets Adhered on SiO 2 /Si Substrates
[22] | Tan C et al. 2016 Appl. Phys. Lett. 108 083112 | Laser-assisted oxidation of multi-layer tungsten diselenide nanosheets
[23] | Wang S F et al. 2016 Phys. Chem. Chem. Phys. 18 4304 | Effect of oxygen and ozone on p-type doping of ultra-thin WSe 2 and MoSe 2 field effect transistors
[24] | Liu H et al. 2014 ACS Nano 8 1031 | Switching Mechanism in Single-Layer Molybdenum Disulfide Transistors: An Insight into Current Flow across Schottky Barriers
[25] | Li S L et al. 2014 ACS Nano 8 12836 | Thickness Scaling Effect on Interfacial Barrier and Electrical Contact to Two-Dimensional MoS 2 Layers
[26] | Xue H et al. 2018 Adv. Funct. Mater. 28 1804388 | A MoSe 2 /WSe 2 Heterojunction-Based Photodetector at Telecommunication Wavelengths
[27] | Han C et al. 2017 Nano Lett. 17 4122 | Surface Functionalization of Black Phosphorus via Potassium toward High-Performance Complementary Devices
[28] | Yu L L et al. 2015 Nano Lett. 15 4928 | High-Performance WSe 2 Complementary Metal Oxide Semiconductor Technology and Integrated Circuits
[29] | Sun J C et al. 2020 Adv. Mater. 32 1906499 | Lateral 2D WSe 2 p–n Homojunction Formed by Efficient Charge‐Carrier‐Type Modulation for High‐Performance Optoelectronics
[30] | Tosun M et al. 2014 ACS Nano 8 4948 | High-Gain Inverters Based on WSe 2 Complementary Field-Effect Transistors
[31] | Guo N et al. 2020 Adv. Sci. 7 1901637 | Light‐Driven WSe 2 ‐ZnO Junction Field‐Effect Transistors for High‐Performance Photodetection