Fe2Ga2S5 as a 2D Antiferromagnetic Semiconductor

Funds: Supported by the National Natural Science Foundation of China (Grant Nos. 11704117, 11774084, U19A2090 and 11974076), and the Project of Educational Commission of Hunan Province of China (Grant No. 18A003).
  • Received Date: July 15, 2020
  • Published Date: September 30, 2020
  • We theoretically investigate physical properties of two-dimensional (2D) Fe2Ga2S5 by employing first-principles calculations. It is found that it is an antiferromagnet with zigzag magnetic configuration orienting in the in-plane direction, with Néel temperatures around 160 K. The band structure of the ground state shows that it is a semiconductor with the indirect band gap of about 0.9 eV, which could be effectively tuned by the lattice strain. We predict that the carrier transport is highly anisotropic, with the electron mobility up to the order of 103 cm2/(Vs) much higher than the hole. These fantastic electronic properties make 2D Fe2Ga2S5 a promising candidate for the future spintronics.
  • Article Text

  • [1]
    Gong C and Zhang X 2019 Science 363 eaav4450 doi: 10.1126/science.aav4450

    CrossRef Google Scholar

    [2]
    Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133 doi: 10.1103/PhysRevLett.17.1133

    CrossRef Google Scholar

    [3]
    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H et al.. 2017 Nature 546 270 doi: 10.1038/nature22391

    CrossRef Google Scholar

    [4]
    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W et al.. 2017 Nature 546 265 doi: 10.1038/nature22060

    CrossRef Google Scholar

    [5]
    Zhu J X, Janoschek M, Chaves D S, Cezar J C, Durakiewicz T, Ronning F, Sassa Y, Mansson M, Scott B L, Wakeham N, Bauer E D and Thompson J D 2016 Phys. Rev. B 93 144404 doi: 10.1103/PhysRevB.93.144404

    CrossRef Google Scholar

    [6]
    Zhuang H L, Kent P R C and Hennig R G 2016 Phys. Rev. B 93 134407 doi: 10.1103/PhysRevB.93.134407

    CrossRef Google Scholar

    [7]
    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z et al.. 2018 Nature 563 94 doi: 10.1038/s41586-018-0626-9

    CrossRef Google Scholar

    [8]
    Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H and Batzill M 2018 Nat. Nanotechnol. 13 289 doi: 10.1038/s41565-018-0063-9

    CrossRef Google Scholar

    [9]
    O'Hara D J, Zhu T, Trout A H, Ahmed A S, Luo Y K, Lee C H, Brenner M R, Rajan S, Gupta J A, McComb D W et al.. 2018 Nano Lett. 18 3125 doi: 10.1021/acs.nanolett.8b00683

    CrossRef Google Scholar

    [10]
    Yuan Q Q, Guo Z, Shi Z Q, Zhao H, Jia Z Y, Wang Q, Sun J, Wu D and Li S C 2020 Chin. Phys. Lett. 37 077502 doi: 10.1088/0256-307X/37/7/077502

    CrossRef Google Scholar

    [11]
    Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G and Cheong H 2016 Nano Lett. 16 7433 doi: 10.1021/acs.nanolett.6b03052

    CrossRef Google Scholar

    [12]
    Wang X, Du K, Liu Y Y F, Hu P, Zhang J, Zhang Q, Owen M H S, Lu X, Gan C K, Sengupta P et al.. 2016 2D Mater. 3 031009 doi: 10.1088/2053-1583/3/3/031009

    CrossRef Google Scholar

    [13]
    Jungwirth T, Marti X, Wadley P and Wunderlich J 2016 Nat. Nanotechnol. 11 231 doi: 10.1038/nnano.2016.18

    CrossRef Google Scholar

    [14]
    Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T and Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005 doi: 10.1103/RevModPhys.90.015005

    CrossRef Google Scholar

    [15]
    Gong W, Leung C H, Sin C K, Zhang J, Zhang X, Xi B and Zhu J 2020 Chin. Phys. Lett. 37 027501 doi: 10.1088/0256-307X/37/2/027501

    CrossRef Google Scholar

    [16]
    Sivadas N, Daniels M W, Swendsen R H, Okamoto S and Xiao D 2015 Phys. Rev. B 91 235425 doi: 10.1103/PhysRevB.91.235425

    CrossRef Google Scholar

    [17]
    Meiklejohn W H and Bean C P 1957 Phys. Rev. 105 904 doi: 10.1103/PhysRev.105.904

    CrossRef Google Scholar

    [18]
    Dogguy-Smiri L and Dung N H 1982 Acta Crystallogr. B 38 372 doi: 10.1107/S0567740882003008

    CrossRef Google Scholar

    [19]
    Blöchl P E 1994 Phys. Rev. B 50 17953 doi: 10.1103/PhysRevB.50.17953

    CrossRef Google Scholar

    [20]
    Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 doi: 10.1103/PhysRevB.54.11169

    CrossRef Google Scholar

    [21]
    Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 doi: 10.1103/PhysRevB.59.1758

    CrossRef Google Scholar

    [22]
    Grau-Crespo R, Corà F, Sokol A A, de Leeuw N H and Catlow C R A 2006 Phys. Rev. B 73 035116 doi: 10.1103/PhysRevB.73.035116

    CrossRef Google Scholar

    [23]
    Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106 doi: 10.1103/PhysRevB.78.134106

    CrossRef Google Scholar

    [24]
    Evans R F L, Fan W J, Chureemart P, Ostler T A, Ellis M O A and Chantrell R W 2014 J. Phys.: Condens. Matter 26 103202 doi: 10.1088/0953-8984/26/10/103202

    CrossRef Google Scholar

    [25]
    Nakatsuji S, Tonomura H, Onuma K, Nambu Y, Sakai O, Maeno Y, Macaluso R T and Chan J Y 2007 Phys. Rev. Lett. 99 157203 doi: 10.1103/PhysRevLett.99.157203

    CrossRef Google Scholar

    [26]
    Reja S, Anisimov P S and Daghofer M 2017 Phys. Rev. B 96 085144 doi: 10.1103/PhysRevB.96.085144

    CrossRef Google Scholar

    [27]
    Anderson P W 1950 Phys. Rev. 79 350 doi: 10.1103/PhysRev.79.350

    CrossRef Google Scholar

    [28]
    Goodenough J B 1955 Phys. Rev. 100 564 doi: 10.1103/PhysRev.100.564

    CrossRef Google Scholar

    [29]
    Goodenough J B 1958 J. Phys. Chem. Solids 6 287 doi: 10.1016/0022-36975890107-0

    CrossRef Google Scholar

    [30]
    Kanamori J 1959 J. Phys. Chem. Solids 10 87 doi: 10.1016/0022-36975990061-7

    CrossRef Google Scholar

    [31]
    Bardeen J and Shockley W 1950 Phys. Rev. 80 72 doi: 10.1103/PhysRev.80.72

    CrossRef Google Scholar

    [32]
    Xi J, Long M, Tang L, Wang D and Shuai Z 2012 Nanoscale 4 4348 doi: 10.1039/c2nr30585b

    CrossRef Google Scholar

    [33]
    Bolotin K I, Sikes K J, Hone J, Stormer H L and Kim P 2008 Phys. Rev. Lett. 101 096802 doi: 10.1103/PhysRevLett.101.096802

    CrossRef Google Scholar

    [34]
    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372 doi: 10.1038/nnano.2014.35

    CrossRef Google Scholar

    [35]
    Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147 doi: 10.1038/nnano.2010.279

    CrossRef Google Scholar

  • Related Articles

    [1]YAN Shi-Chao, XIE Nan, GONG Hui-Qi, SUN Qian, GUO Yang, SHAN Xin-Yan, LU Xing-Hua. Mapping the Diffusion Potential of a Reconstructed Au(111) Surface at Nanometer Scale with 2D Molecular Gas [J]. Chin. Phys. Lett., 2012, 29(4): 046803. doi: 10.1088/0256-307X/29/4/046803
    [2]DING Dong-Sheng, ZHOU Zhi-Yuan, SHI Bao-Sen, ZOU Xu-Bo, GUO Guang-Can. Two-Photon Atomic Coherence Effect of Transition 5S1/2–5P3/2–4D5/2(4D3/2) of 85Rb atoms [J]. Chin. Phys. Lett., 2012, 29(2): 024202. doi: 10.1088/0256-307X/29/2/024202
    [3]ZHANG Yin, DONG Jian-Ji, LEI Lei, HE Hao, HUANG De-Xiu, ZHANG Xin-Liang. A 40-Gbit/s 1-to-2 Photonic Data Distributor Employing a Single Semiconductor Optical Amplifier [J]. Chin. Phys. Lett., 2011, 28(6): 064212. doi: 10.1088/0256-307X/28/6/064212
    [4]CAI Hui, MIAO Guo-Qing. Cluster Model for Wave-Like Motions of a 2D Vertically Vibrated Granular System [J]. Chin. Phys. Lett., 2010, 27(12): 124501. doi: 10.1088/0256-307X/27/12/124501
    [5]LI An-Kang, LU Jun-Zhe, MA Lei. Bond-Alternating Antiferromagnetic S=1/2 Heisenberg Ladder with Ferromagnetic Diagonal Coupling [J]. Chin. Phys. Lett., 2009, 26(12): 127502. doi: 10.1088/0256-307X/26/12/127502
    [6]LI Chao, YAO Kan, LI Fang. Two-Dimensional (2D) Polygonal Electromagnetic Cloaks [J]. Chin. Phys. Lett., 2009, 26(6): 064206. doi: 10.1088/0256-307X/26/6/064206
    [7]SHEN Yi-Fan, DAI Kang, MU Bao-Xia, WANG Shu-Ying, CUI Xiu-Hua. Energy-Pooling Collisions in Rubidium: 5P3/2+53/2 → 5S +(nl=5D, 7S) [J]. Chin. Phys. Lett., 2005, 22(11): 2805-2807.
    [8]ZHANG Hu-Yong, SHEN Wen-Qing, REN Zhong-Zhou, MA Yu-Gang, CAI Xiang-Zhou, ZHONG Chen, WEI Yi-Bin, CHEN Jin-Gen. Possible 1d5/2 and 2s1/2 Level Inversion in the Proton-Rich Nucleus 23Al [J]. Chin. Phys. Lett., 2002, 19(11): 1599-1601.
    [9]CHEN Chong-Yang, QI Jing-Bo, WANG Yan-Sen, XU Xue-Ji, SUN Yong-Sheng. A Calculation of Electron Impact for the 3d5/2 → 2p3/2 Line Emission of Fe23+ [J]. Chin. Phys. Lett., 2000, 17(6): 403-404.
    [10]LU Wei, SHEN Xuechu, LIU Pulin, M. von Ortenberg, J . Tuchendler, J . P. Renard, ZHENG Fen. Far Infrared Resonance Transition Study of the Chain-End S = 1/2 Modes in an S = 1 Antiferromagnetic Chain [J]. Chin. Phys. Lett., 1995, 12(5): 313-316.

Catalog

    Article views (430) PDF downloads (842) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return