[1] | Saito Y, Nojima T and Iwasa Y 2017 Nat. Rev. Mater. 2 16094 | Highly crystalline 2D superconductors
[2] | Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C and Xue Q K 2012 Chin. Phys. Lett. 29 037402 | Interface-Induced High-Temperature Superconductivity in Single Unit-Cell FeSe Films on SrTiO 3
[3] | Lu J M, Zheliuk O, Leermakers I, Yuan N F Q, Zeitler U, Law K T and Ye J T 2015 Science 350 1353 | Evidence for two-dimensional Ising superconductivity in gated MoS2
[4] | Xi X, Wang Z, Zhao W, Park J H, Law K T, Berger H, Forró L, Shan J and Mak K F 2016 Nat. Phys. 12 139 | Ising pairing in superconducting NbSe2 atomic layers
[5] | Si C, Liu Z, Duan W and Liu F 2013 Phys. Rev. Lett. 111 196802 | First-Principles Calculations on the Effect of Doping and Biaxial Tensile Strain on Electron-Phonon Coupling in Graphene
[6] | Ludbrook B M, Levy G, Nigge P, Zonno M, Schneider M, Dvorak D J, Veenstra C N, Zhdanovich S, Wong D, Dosanjh P 2015 Proc. Natl. Acad. Sci. USA 112 11795 | Superconducting graphene sheets in CaC6 enabled by phonon-mediated interband interactions
[7] | Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 | Unconventional superconductivity in magic-angle graphene superlattices
[8] | Penev E S, Kutana A and Yakobson B I 2016 Nano Lett. 16 2522 | Can Two-Dimensional Boron Superconduct?
[9] | Zhao Y, Zeng S and Ni J 2016 Phys. Rev. B 93 014502 | Superconductivity in two-dimensional boron allotropes
[10] | Kroto H W, Heath J R, O'Brien S C, Curl R F and Smalley R E 1985 Nature 318 162 | C60: Buckminsterfullerene
[11] | Iijima S 1991 Nature 354 56 | Helical microtubules of graphitic carbon
[12] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197 | Two-dimensional gas of massless Dirac fermions in graphene
[13] | Li Q, Ma Y, Oganov A R, Wang H, Wang H, Xu Y, Cui T, Mao H K and Zou G 2009 Phys. Rev. Lett. 102 175506 | Superhard Monoclinic Polymorph of Carbon
[14] | Zhou X F, Qian G R, Dong X, Zhang L, Tian Y and Wang H T 2010 Phys. Rev. B 82 134126 | Ab initio study of the formation of transparent carbon under pressure
[15] | Li Y, Xu L, Liu H and Li Y 2014 Chem. Soc. Rev. 43 2572 | Graphdiyne and graphyne: from theoretical predictions to practical construction
[16] | Huang Q, Yu D, Xu B, Hu W, Ma Y, Wang Y, Zhao Z, Wen B, He J, Liu Z 2014 Nature 510 250 | Nanotwinned diamond with unprecedented hardness and stability
[17] | Zhang S, Zhou J, Wang Q, Chen X, Kawazoe Y and Jena P 2015 Proc. Natl. Acad. Sci. USA 112 2372 | Pentaheptite modifications of the graphite sheet
[18] | Yang X, Yao M, Wu X, Liu S, Chen S, Yang K, Liu R, Cui T, Sundqvist B and Liu B 2017 Phys. Rev. Lett. 118 245701 | Novel Superhard Carbon Allotrope from Cold-Compressed Peapods
[19] | Terrones H, Terrones M, Hernández E, Grobert N, Charlier J C and Ajayan P M 2000 Phys. Rev. Lett. 84 1716 | New Metallic Allotropes of Planar and Tubular Carbon
[20] | Liu Y, Wang G, Huang Q, Guo L and Chen X 2012 Phys. Rev. Lett. 108 225505 | Structural and Electronic Properties of Graphene: A Two-Dimensional Carbon Allotrope with Tetrarings
[21] | Majidi R 2017 Theor. Chem. Acc. 136 109 | Density functional theory study on structural and mechanical properties of graphene, T-graphene, and R-graphyne
[22] | Sheng X L, Cui H J, Ye F, Yan Q B, Zheng Q R and Su G 2012 J. Appl. Phys. 112 074315 | Octagraphene as a versatile carbon atomic sheet for novel nanotubes, unconventional fullerenes, and hydrogen storage
[23] | Hannay N B, Geballe T H, Matthias B T, Andres K, Schmidt P and MacNair D 1965 Phys. Rev. Lett. 14 225 | Superconductivity in Graphitic Compounds
[24] | Ganin A Y, Takabayashi Y, Jeglic P, Arcon D, Potocnik A, Baker P J, Ohishi Y, McDonald M T, Tzirakis M D, McLennan A 2010 Nature 466 221 | Polymorphism control of superconductivity and magnetism in Cs3C60 close to the Mott transition
[25] | Tang Z K, Zhang L, Wang N, Zhang X X, Wen G H, Li G D, Wang J N, Chan C T and Sheng P 2001 Science 292 2462 | Superconductivity in 4 Angstrom Single-Walled Carbon Nanotubes
[26] | Ekimov E A, Sidorov V A, Bauer E D, Mel'nik N N, Curro N J, Thompson J D and Stishov S M 2004 Nature 428 542 | Superconductivity in diamond
[27] | Xia K, Ma M, Liu C, Gao H, Chen Q, He J, Sun J, Wang H T, Tian Y and Xing D 2017 Mater. Today Phys. 3 76 | Superhard and superconducting B6C
[28] | Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y and Akimitsu J 2001 Nature 410 63 | Superconductivity at 39 K in magnesium diboride
[29] | Grüneis A, Attaccalite C, Rubio A, Vyalikh D V, Molodtsov S L, Fink J, Follath R, Eberhardt W, Büchner B and Pichler T 2009 Phys. Rev. B 79 205106 | Electronic structure and electron-phonon coupling of doped graphene layers in
[30] | Pan Z H, Camacho J, Upton M H, Fedorov A V, Howard C A, Ellerby M and Valla T 2011 Phys. Rev. Lett. 106 187002 | Electronic Structure of Superconducting and Nonsuperconducting Graphite Intercalation Compounds: Evidence for a Graphene-Sheet-Driven Superconducting State
[31] | Smith R P, Kusmartseva A, Ko Y T C, Saxena S S, Akrap A, Forró L, Laad M, Weller T E, Ellerby M and Skipper N T 2006 Phys. Rev. B 74 024505 | Pressure dependence of the superconducting transition temperature in and
[32] | Weller T E, Ellerby M, Saxena S S, Smith R P and Skipper N T 2005 Nat. Phys. 1 39 | Superconductivity in the intercalated graphite compounds C6Yb and C6Ca
[33] | Emery N, Hérold C, d'Astuto M, Garcia V, Bellin C, Marêché J F, Lagrange P and Loupias G 2005 Phys. Rev. Lett. 95 087003 | Superconductivity of Bulk
[34] | Gauzzi A, Takashima S, Takeshita N, Terakura C, Takagi H, Emery N, Hérold C, Lagrange P and Loupias G 2007 Phys. Rev. Lett. 98 067002 | Enhancement of Superconductivity and Evidence of Structural Instability in Intercalated Graphite under High Pressure
[35] | Profeta G, Calandra M and Mauri F 2012 Nat. Phys. 8 131 | Phonon-mediated superconductivity in graphene by lithium deposition
[36] | Xue M, Chen G, Yang H, Zhu Y, Wang D, He J and Cao T 2012 J. Am. Chem. Soc. 134 6536 | Superconductivity in Potassium-Doped Few-Layer Graphene
[37] | Chapman J, Su Y, Howard C A, Kundys D, Grigorenko A N, Guinea F, Geim A K, Grigorieva I V and Nair R R 2016 Sci. Rep. 6 23254 | Superconductivity in Ca-doped graphene laminates
[38] | Zhang W, Oganov A R, Goncharov A F, Zhu Q, Boulfelfel S E, Lyakhov A O, Stavrou E, Somayazulu M, Prakapenka V B and Konôpková Z 2013 Science 342 1502 | Unexpected Stable Stoichiometries of Sodium Chlorides
[39] | Zhang L, Wang Y, Lv J and Ma Y 2017 Nat. Rev. Mater. 2 17005 | Materials discovery at high pressures
[40] | Klimeš J, Bowler D R and Michaelides A 2010 J. Phys.: Condens. Matter 22 022201 | Chemical accuracy for the van der Waals density functional
[41] | Klimeš J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131 | Van der Waals density functionals applied to solids
[42] | Xia K, Gao H, Liu C, Yuan J, Sun J, Wang H T and Xing D 2018 Sci. Bull. 63 817 | A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search
[43] | Salamat A, Fischer R A, Briggs R, McMahon M I and Petitgirard S 2014 Coord. Chem. Rev. 277 15 | In situ synchrotron X-ray diffraction in the laser-heated diamond anvil cell: Melting phenomena and synthesis of new materials
[44] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 | Electric Field Effect in Atomically Thin Carbon Films
[45] | Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS Nano 8 4033 | Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility
[46] | Kim D Y, Stefanoski S, Kurakevych O O and Strobel T A 2015 Nat. Mater. 14 169 | Synthesis of an open-framework allotrope of silicon
[47] | Zacharia R, Ulbricht H and Hertel T 2004 Phys. Rev. B 69 155406 | Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons
[48] | Ziambaras E, Kleis J, Schröder E and Hyldgaard P 2007 Phys. Rev. B 76 155425 | Potassium intercalation in graphite: A van der Waals density-functional study
[49] | Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G 2018 Nat. Nanotechnol. 13 246 | Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds
[50] | Lee J W, Kim M, Na W, Hong S M and Koo C M 2015 Carbon 91 527 | Fabrication of high quality graphene nanosheets via a spontaneous electrochemical reaction process
[51] | Bharath G, Alhseinat E, Ponpandian N, Khan M A, Siddiqui M R, Ahmed F and Alsharaeh E H 2017 Sep. Purif. Technol. 188 206 | Development of adsorption and electrosorption techniques for removal of organic and inorganic pollutants from wastewater using novel magnetite/porous graphene-based nanocomposites
[52] | Tan R K L, Reeves S P, Hashemi N, Thomas D G, Kavak E, Montazami R and Hashemi N N 2017 J. Mater. Chem. A 5 17777 | Graphene as a flexible electrode: review of fabrication approaches
[53] | Damascelli A, Hussain Z and Shen Z X 2003 Rev. Mod. Phys. 75 473 | Angle-resolved photoemission studies of the cuprate superconductors
[54] | Kuroki K, Onari S, Arita R, Usui H, Tanaka Y, Kontani H and Aoki H 2008 Phys. Rev. Lett. 101 087004 | Unconventional Pairing Originating from the Disconnected Fermi Surfaces of Superconducting
[55] | Allen P B and Dynes R C 1975 Phys. Rev. B 12 905 | Transition temperature of strong-coupled superconductors reanalyzed
[56] | He S, He J, Zhang W, Zhao L, Liu D, Liu X, Mou D, Ou Y B, Wang Q Y, Li Z 2013 Nat. Mater. 12 605 | Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films
[57] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 | Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
[58] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | Generalized Gradient Approximation Made Simple
[59] | Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 | Special points for Brillouin-zone integrations
[60] | Grimme S 2006 J. Comput. Chem. 27 1787 | Semiempirical GGA-type density functional constructed with a long-range dispersion correction
[61] | Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104 | A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
[62] | Dion M, Rydberg H, Schröder E, Langreth D C and Lundqvist B I 2004 Phys. Rev. Lett. 92 246401 | Van der Waals Density Functional for General Geometries
[63] | Román-Pérez G and Soler J M 2009 Phys. Rev. Lett. 103 096102 | Efficient Implementation of a van der Waals Density Functional: Application to Double-Wall Carbon Nanotubes
[64] | Lee K, Murray E D, Kong L, Lundqvist B I and Langreth D C 2010 Phys. Rev. B 82 081101 | Higher-accuracy van der Waals density functional
[65] | Hoover W G 1985 Phys. Rev. A 31 1695 | Canonical dynamics: Equilibrium phase-space distributions
[66] | Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I 2009 J. Phys.: Condens. Matter 21 395502 | QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials