Processing math: 100%

High-Brightness Low-Divergence Tapered Lasers with a Narrow Taper Angle

Funds: Supported by the National Key Research and Development Program of China under Grant Nos 2016YFB0402203 and 2016YFA0301102, and the National Natural Science Foundation of China under Grant Nos 61535013 and 91850206.
  • Received Date: March 19, 2019
  • Published Date: July 31, 2019
  • High-brightness tapered lasers with photonic crystal structures are designed and fabricated. A narrow taper angle is designed for the tapered section. The device delivers an output power of 3.3 W and a maximum wall-plug efficiency of 43%. The vertical beam divergence is around 11 at different currents. Nearly diffraction-limited beam qualities for the vertical and lateral directions are obtained. The lateral beam quality factor M2 is below 2.5 and the vertical M2 value is around 1.5 across the whole operating current range. The maximum brightness is 85 MWcm2sr1. When the current is above 3.3 A, the brightness is still above 80 MWcm2sr1.
  • Article Text

  • [1]
    Chan H Y, Alam S, Xu L, Bateman J, Richardson D J and Shepherd D P 2014 Opt. Express 22 21938 doi: 10.1364/OE.22.021938}

    CrossRef Google Scholar

    [2]
    Fiebig C, Blume G, Uebernickel M, Feise D, Kaspari C, Paschke K, Fricke J, Wenzel H and Erbert G 2009 IEEE J. Sel. Top. Quantum Electron. 15 978 doi: 10.1109/JSTQE.2009.2013479}

    CrossRef Google Scholar

    [3]
    Adamiec P, Sumpf B, Rüdiger I, Fricke J, Hasler K H, Ressel P, Wenzel H et al. 2009 Opt. Lett. 34 2456 doi: 10.1364/OL.34.002456}

    CrossRef Google Scholar

    [4]
    Vilera M, Pérez-Serrano A, Tijero J M G and Esquivias I 2015 IEEE Photon. J. 7 1500709 doi: 10.1109/JPHOT.2015.2402597}

    CrossRef Google Scholar

    [5]
    Sumpf B, Hasler K H, Adamiec P, Bugge F, Dittmar F, Fricke J, Wenzel H, Zorn M, Erbert G and Trankle G 2009 IEEE J. Sel. Top. Quantum Electron. 15 1009 doi: 10.1109/JSTQE.2008.2010952}

    CrossRef Google Scholar

    [6]
    Wang X, Erbert G, Wenzel H, Eppich B, Crump P, Ginolas A, Fricke J, Bugge F, Spreemann M and Trankle G 2012 Semicond. Sci. Technol. 27 015010 doi: 10.1088/0268-1242/27/1/015010}

    CrossRef Google Scholar

    [7]
    Kelemen M T, Weber J, Kaufel G, Bihlmann G, Moritz R, Mikulla M and Weimann G 2005 Electron. Lett. 41 1011 doi: 10.1049/el:20052504}

    CrossRef Google Scholar

    [8]
    Fiebig C, Blume G, Kaspari C, Feise D, Fricke J, Matalla M, John W, Wenzel H, Paschke K and Erbert G 2008 Electron. Lett. 44 1253 doi: 10.1049/el:20081371}

    CrossRef Google Scholar

    [9]
    Odriozola H, Tijero J M G, Borruel L, Esquivias I, Wenzel H, Dittmar F, Paschke K, Sumpf B and Erbert G 2009 IEEE J. Quantum Electron. 45 42 doi: 10.1109/JQE.2008.2005358}

    CrossRef Google Scholar

    [10]
    Pagano R, Ziegler M, Tomm J W, Esquivias I, Tijero J M G, O'Callaghan J R, N Michel N, Krakowski M and Corbett B 2011 Appl. Phys. Lett. 98 221110 doi: 10.1063/1.3596445}

    CrossRef Google Scholar

    [11]
    Liu L, Qu H W, Wang Y F, Liu Y, Zhang Y J and Zheng W H 2014 Opt. Lett. 39 3231 doi: 10.1364/OL.39.003231}

    CrossRef Google Scholar

    [12]
    Heinrich A, Hagen C, Harlander M and Nussbaumer B 2014 Proc. SPIE 8965 89650W doi: 10.1117/12.2039355}

    CrossRef Google Scholar

    [13]
    Buda M, Hay J, Tan H H, Wong-Leung J and Jagadish C 2003 IEEE J. Quantum Electron. 39 625 doi: 10.1109/JQE.2003.810270}

    CrossRef Google Scholar

    [14]
    Pietrzak A, Wenzel H, Crump P, Bugge F, Fricke J, Spreemann M, Erbert G and Trankle G 2012 IEEE J. Quantum Electron. 48 568 doi: 10.1109/JQE.2012.2184526}

    CrossRef Google Scholar

    [15]
    Crump P, Pietrzak A, Bugge F, Wenzel H, Erbert G and Trankle G 2010 Appl. Phys. Lett. 96 131110 doi: 10.1063/1.3378809}

    CrossRef Google Scholar

    [16]
    Smowton P M, Lewis G M, Yin M, Summers H D, Berry G and Button C C 1999 IEEE J. Sel. Top. Quantum Electron. 5 735 doi: 10.1109/2944.788444}

    CrossRef Google Scholar

    [17]
    Malag A, Dabrowska E, Teodorczyk M, Sobczak G et al. 2012 IEEE J. Quantum Electron. 48 465 doi: 10.1109/JQE.2012.2184741}

    CrossRef Google Scholar

    [18]
    Liu Y, Qu H W, Zhao S Y, Zhou X Y, Wang Y F and Zheng W H 2017 Semicond. Sci. Technol. 32 01LT01 doi: 10.1088/1361-6641/32/1/01LT01}

    CrossRef Google Scholar

    [19]
    Liu L, Qu H W, Liu Y, Wang Y F, Qi A Y, Guo X J, Zhao P C, Zhang Y J and Zheng W H 2015 IEEE J. Sel. Top. Quantum Electron. 21 1900107 doi: 10.1109/JSTQE.2014.2327810}

    CrossRef Google Scholar

    [20]
    Miah M J, Kettler T, Posilovic K, Kalosha P, Skoczowsky D, Rosales R, Bimberg D, Pohl J and Weyers M 2014 Appl. Phys. Lett. 105 151105 doi: 10.1063/1.4898010}

    CrossRef Google Scholar

    [21]
    Miah M J, Kalosha V P, Bimberg D, Pohl J and Weyers M 2016 Opt. Express 24 30514 doi: 10.1364/OE.24.030514}

    CrossRef Google Scholar

    [22]
    Zhao S Y, Wang Y F, Qu H W, Liu Y, Zhou X Y, Liu A J and Zheng W H 2017 IEEE Photon. Technol. Lett. 29 2005 doi: 10.1109/LPT.2017.2758904}

    CrossRef Google Scholar

    [23]
    Ma X L, Liu A J, Qu H W, Liu Y, Zhao P C, Guo X J and Zheng W H 2016 IEEE Photon. Technol. Lett. 28 2403 doi: 10.1109/LPT.2016.2596901}

    CrossRef Google Scholar

Catalog

    Article views (445) PDF downloads (407) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return