High-Brightness Low-Divergence Tapered Lasers with a Narrow Taper Angle
-
Abstract
High-brightness tapered lasers with photonic crystal structures are designed and fabricated. A narrow taper angle is designed for the tapered section. The device delivers an output power of 3.3 W and a maximum wall-plug efficiency of 43%. The vertical beam divergence is around 11∘ at different currents. Nearly diffraction-limited beam qualities for the vertical and lateral directions are obtained. The lateral beam quality factor M2 is below 2.5 and the vertical M2 value is around 1.5 across the whole operating current range. The maximum brightness is 85 MW⋅cm−2sr−1. When the current is above 3.3 A, the brightness is still above 80 MW⋅cm−2sr−1. -
-
References
[1] Chan H Y, Alam S, Xu L, Bateman J, Richardson D J and Shepherd D P 2014 Opt. Express 22 21938 doi: 10.1364/OE.22.021938}[2] Fiebig C, Blume G, Uebernickel M, Feise D, Kaspari C, Paschke K, Fricke J, Wenzel H and Erbert G 2009 IEEE J. Sel. Top. Quantum Electron. 15 978 doi: 10.1109/JSTQE.2009.2013479}[3] Adamiec P, Sumpf B, Rüdiger I, Fricke J, Hasler K H, Ressel P, Wenzel H et al. 2009 Opt. Lett. 34 2456 doi: 10.1364/OL.34.002456}[4] Vilera M, Pérez-Serrano A, Tijero J M G and Esquivias I 2015 IEEE Photon. J. 7 1500709 doi: 10.1109/JPHOT.2015.2402597}[5] Sumpf B, Hasler K H, Adamiec P, Bugge F, Dittmar F, Fricke J, Wenzel H, Zorn M, Erbert G and Trankle G 2009 IEEE J. Sel. Top. Quantum Electron. 15 1009 doi: 10.1109/JSTQE.2008.2010952}[6] Wang X, Erbert G, Wenzel H, Eppich B, Crump P, Ginolas A, Fricke J, Bugge F, Spreemann M and Trankle G 2012 Semicond. Sci. Technol. 27 015010 doi: 10.1088/0268-1242/27/1/015010}[7] Kelemen M T, Weber J, Kaufel G, Bihlmann G, Moritz R, Mikulla M and Weimann G 2005 Electron. Lett. 41 1011 doi: 10.1049/el:20052504}[8] Fiebig C, Blume G, Kaspari C, Feise D, Fricke J, Matalla M, John W, Wenzel H, Paschke K and Erbert G 2008 Electron. Lett. 44 1253 doi: 10.1049/el:20081371}[9] Odriozola H, Tijero J M G, Borruel L, Esquivias I, Wenzel H, Dittmar F, Paschke K, Sumpf B and Erbert G 2009 IEEE J. Quantum Electron. 45 42 doi: 10.1109/JQE.2008.2005358}[10] Pagano R, Ziegler M, Tomm J W, Esquivias I, Tijero J M G, O'Callaghan J R, N Michel N, Krakowski M and Corbett B 2011 Appl. Phys. Lett. 98 221110 doi: 10.1063/1.3596445}[11] Liu L, Qu H W, Wang Y F, Liu Y, Zhang Y J and Zheng W H 2014 Opt. Lett. 39 3231 doi: 10.1364/OL.39.003231}[12] Heinrich A, Hagen C, Harlander M and Nussbaumer B 2014 Proc. SPIE 8965 89650W doi: 10.1117/12.2039355}[13] Buda M, Hay J, Tan H H, Wong-Leung J and Jagadish C 2003 IEEE J. Quantum Electron. 39 625 doi: 10.1109/JQE.2003.810270}[14] Pietrzak A, Wenzel H, Crump P, Bugge F, Fricke J, Spreemann M, Erbert G and Trankle G 2012 IEEE J. Quantum Electron. 48 568 doi: 10.1109/JQE.2012.2184526}[15] Crump P, Pietrzak A, Bugge F, Wenzel H, Erbert G and Trankle G 2010 Appl. Phys. Lett. 96 131110 doi: 10.1063/1.3378809}[16] Smowton P M, Lewis G M, Yin M, Summers H D, Berry G and Button C C 1999 IEEE J. Sel. Top. Quantum Electron. 5 735 doi: 10.1109/2944.788444}[17] Malag A, Dabrowska E, Teodorczyk M, Sobczak G et al. 2012 IEEE J. Quantum Electron. 48 465 doi: 10.1109/JQE.2012.2184741}[18] Liu Y, Qu H W, Zhao S Y, Zhou X Y, Wang Y F and Zheng W H 2017 Semicond. Sci. Technol. 32 01LT01 doi: 10.1088/1361-6641/32/1/01LT01}[19] Liu L, Qu H W, Liu Y, Wang Y F, Qi A Y, Guo X J, Zhao P C, Zhang Y J and Zheng W H 2015 IEEE J. Sel. Top. Quantum Electron. 21 1900107 doi: 10.1109/JSTQE.2014.2327810}[20] Miah M J, Kettler T, Posilovic K, Kalosha P, Skoczowsky D, Rosales R, Bimberg D, Pohl J and Weyers M 2014 Appl. Phys. Lett. 105 151105 doi: 10.1063/1.4898010}[21] Miah M J, Kalosha V P, Bimberg D, Pohl J and Weyers M 2016 Opt. Express 24 30514 doi: 10.1364/OE.24.030514}[22] Zhao S Y, Wang Y F, Qu H W, Liu Y, Zhou X Y, Liu A J and Zheng W H 2017 IEEE Photon. Technol. Lett. 29 2005 doi: 10.1109/LPT.2017.2758904}[23] Ma X L, Liu A J, Qu H W, Liu Y, Zhao P C, Guo X J and Zheng W H 2016 IEEE Photon. Technol. Lett. 28 2403 doi: 10.1109/LPT.2016.2596901}