[1] | Damascelli A, Hussain Z and Shen Z X 2003 Rev. Mod. Phys. 75 473 | Angle-resolved photoemission studies of the cuprate superconductors
[2] | Campuzano J C et al 2004 Physics of Superconductors (Berlin: Springer) vol 2 p 167 |
[3] | Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17 | Doping a Mott insulator: Physics of high-temperature superconductivity
[4] | Huefner S et al 2008 Rep. Prog. Phys. 71 062501 | Two gaps make a high-temperature superconductor?
[5] | Vishik I M et al 2012 Proc. Natl. Acad. Sci. USA 109 18332 | Phase competition in trisected superconducting dome
[6] | He Y et al 2018 Science 362 62 | Rapid change of superconductivity and electron-phonon coupling through critical doping in Bi-2212
[7] | Tokura Y and Arima T 1990 Jpn. J. Appl. Phys. 29 2388 | New Classification Method for Layered Copper Oxide Compounds and Its Application to Design of New High T c Superconductors
[8] | Eisaki H et al 2004 Phys. Rev. B 69 064512 | Effect of chemical inhomogeneity in bismuth-based copper oxide superconductors
[9] | Ruan W et al 2016 Sci. Bull. 61 1826 | Relationship between the parent charge transfer gap and maximum transition temperature in cuprates
[10] | Zhou X J et al 2007 Handbook of High Temperature Superconductivity (Berlin: Springer) p 87 |
[11] | Hashimoto M et al 2014 Nat. Phys. 10 483 | Energy gaps in high-transition-temperature cuprate superconductors
[12] | Andersen O K et al 1995 J. Phys. Chem. Solids 56 1573 | LDA energy bands, low-energy hamiltonians, t′, t″, t⊥ (k), and J⊥
[13] | Xiang T 1996 Phys. Rev. Lett. 77 4632 | Axis Superfluid Response of Copper Oxide Superconductors
[14] | Xiang T et al 1998 Int. J. Mod. Phys. B 12 1007 | Low Temperature Superfluid Response of High-T c Superconductors
[15] | Bansil A and Lindroos M 1999 Phys. Rev. Lett. 83 5154 | Importance of Matrix Elements in the ARPES Spectra of BISCO
[16] | Bogdanov P V et al 2001 Phys. Rev. B 64 180505 | Photoemission study of Pb doped A Fermi surface picture
[17] | Feng D L et al 2001 Phys. Rev. Lett. 86 5550 | Bilayer Splitting in the Electronic Structure of Heavily Overdoped
[18] | Chuang Y D et al 2001 Phys. Rev. Lett. 87 117002 | Doubling of the Bands in Overdoped : Evidence for -Axis Bilayer Coupling
[19] | Su Y H et al 2003 Phys. Rev. B 68 212501 | Effect of bilayer coupling on tunneling conductance of double-layer high- cuprates
[20] | Borisenko S V et al 2002 Phys. Rev. B 66 140509 | Superconducting gap in the presence of bilayer splitting in underdoped
[21] | Anzai H et al 2013 Nat. Commun. 4 1815 | Relation between the nodal and antinodal gap and critical temperature in superconducting Bi2212
[22] | Ideta S et al 2010 Phys. Rev. Lett. 104 227001 | Enhanced Superconducting Gaps in the Trilayer High-Temperature Cuprate Superconductor
[23] | Wang C L et al 2016 Phys. Rev. B 94 241119 | Observation of Fermi arc and its connection with bulk states in the candidate type-II Weyl semimetal
[24] | Zhou X J et al 2018 Rep. Prog. Phys. 81 062101 | New developments in laser-based photoemission spectroscopy and its scientific applications: a key issues review
[25] | Zhang Y X et al 2016 Chin. Phys. Lett. 33 067403 | A Reproducible Approach of Preparing High-Quality Overdoped Bi 2 Sr 2 CaCu 2 O 8+ δ Single Crystals by Oxygen Annealing and Quenching Method
[26] | Chuang Y D et al 2004 Phys. Rev. B 69 094515 | Bilayer splitting and coherence effects in optimal and underdoped
[27] | Gao Y A N 1988 Science 241 954 | The Incommensurate Modulation of the 2212 Bi-Sr-Ca-Cu-O Superconductor
[28] | Eibl O 1991 Physica C 175 419 | Displacive modulation and chemical composition of (Bi, Pb)2Sr2Can−1CunO2n+4 (n=2, 3) high-Tc superconductors
[29] | Heinrich H et al 1994 Physica C 224 133 | Modelling the atomic displacements in Bi2Sr2Can−1CunOx superconductors
[30] | Withers R L et al 1988 J. Phys. C 21 6067 | A transmission electron microscope and group theoretical study of the new Bi-based high-T c superconductors and some closely related Aurivillius phases
[31] | Aebi P et al 1994 Physica C 235–240 949 | Complete Fermi surface mapping of Bi2Sr2Can−1CunO2n+4(001) with n=1,2
[32] | Osterwalder J et al 1995 Appl. Phys. A 60 247 | Angle-resolved photoemission experiments on Bi2Sr2CaCu2O8+?(001) Effects of the incommensurate lattice modulation
[33] | Ding H et al 1996 Phys. Rev. Lett. 76 1533 | Electronic Excitations in : Fermi Surface, Dispersion, and Absence of Bilayer Splitting
[34] | Fretwell H M et al 2000 Phys. Rev. Lett. 84 4449 | Fermi Surface of
[35] | Lindroos M et al 2004 Phys. Rev. B 69 140505 | Special photon energies for extracting the bosonic spectral function mediating superconductivity in via angle-resolved photoemission spectroscopy
[36] | Kordyuk A A et al 2004 Phys. Rev. B 70 214525 | Evidence for CuO conducting band splitting in the nodal direction of
[37] | Borisenko S V et al 2004 Phys. Rev. B 69 224509 | Circular dichroism and bilayer splitting in the normal state of underdoped and overdoped
[38] | Iwasawa H et al 2007 Physica C 463–465 52 | A re-examination of the oxygen isotope effect in ARPES spectra of Bi2212
[39] | Markiewicz R S 2005 Phys. Rev. B 72 054519 | One-band tight-binding model parametrization of the high- cuprates including the effect of dispersion
[40] | Cuk T et al 2005 Phys. Status Solidi B 242 11 | A review of electron-phonon coupling seen in the high-Tc superconductors by angle-resolved photoemission studies (ARPES)
[41] | He J F et al 2013 Phys. Rev. Lett. 111 107005 | Coexistence of Two Sharp-Mode Couplings and their Unusual Momentum Dependence in the Superconducting State of Revealed by Laser-Based Angle-Resolved Photoemission
[42] | Norman M R et al 1998 Phys. Rev. B 57 R11093 | Phenomenology of the low-energy spectral function in high- superconductors
[43] | Mesot J et al 1999 Phys. Rev. Lett. 83 840 | Superconducting Gap Anisotropy and Quasiparticle Interactions: A Doping Dependent Photoemission Study
[44] | Ideta S et al 2010 Physica C 470 S14 | Angle-resolved photoemission study of the tri-layer high-Tc superconductor Bi2Sr2Ca2Cu3O10+δ: Effects of inter-layer hopping
[45] | Kunisada S et al 2017 Phys. Rev. Lett. 119 217001 | Observation of Bogoliubov Band Hybridization in the Optimally Doped Trilayer
[46] | Meng J Q et al 2009 Phys. Rev. B 79 024514 | Monotonic -wave superconducting gap of the optimally doped superconductor by laser-based angle-resolved photoemission spectroscopy