[1] | Bayer M et al 1998 Phys. Rev. Lett. 81 2582 | Optical Modes in Photonic Molecules
[2] | Rakovich Y P and Donegan J F 2009 Laser Photon. Rev. 4 179 | Photonic atoms and molecules
[3] | Zhao Y et al 2015 Opt. Express 23 9211 | Ultrafast optical switching using photonic molecules in photonic crystal waveguides
[4] | Wang K et al 2017 Adv. Opt. Mater. 5 1600744 | Single Crystal Microrod Based Homonuclear Photonic Molecule Lasers
[5] | Boriskina S V and Negro L D 2010 Opt. Lett. 35 2496 | Self-referenced photonic molecule bio(chemical)sensor
[6] | Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633 | Electromagnetically induced transparency: Optics in coherent media
[7] | Harris S E, Field J E and Imamoglu A 1990 Phys. Rev. Lett. 64 1107 | Nonlinear optical processes using electromagnetically induced transparency
[8] | Smith D D et al 2004 Phys. Rev. A 69 063804 | Coupled-resonator-induced transparency
[9] | Feng L, El-Ganainy R and Ge L 2017 Nat. Photon. 11 752 | Non-Hermitian photonics based on parity–time symmetry
[10] | Peng B et al 2014 Nat. Phys. 10 394 | Parity–time-symmetric whispering-gallery microcavities
[11] | Chang L et al 2014 Nat. Photon. 8 524 | Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators
[12] | Peng B et al 2014 Science 346 328 | Loss-induced suppression and revival of lasing
[13] | Shen J T and Fan S 2005 Phys. Rev. Lett. 95 213001 | Coherent Single Photon Transport in a One-Dimensional Waveguide Coupled with Superconducting Quantum Bits
[14] | Zhou L et al 2008 Phys. Rev. Lett. 101 100501 | Controllable Scattering of a Single Photon inside a One-Dimensional Resonator Waveguide
[15] | Waks E and Vuckovic J 2006 Phys. Rev. Lett. 96 153601 | Dipole Induced Transparency in Drop-Filter Cavity-Waveguide Systems
[16] | Liu Y C et al 2011 Phys. Rev. A 84 011805(R) | Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering
[17] | Guo Y et al 2008 Phys. Rev. A 78 013833 | Magneto-optical Stern-Gerlach effect in an atomic ensemble
[18] | Wang G Y, Liu Q and Deng F G 2016 Phys. Rev. A 94 032319 | Hyperentanglement purification for two-photon six-qubit quantum systems
[19] | Leuenberger M N, Flatte M E and Awschalom D D 2005 Phys. Rev. Lett. 94 107401 | Teleportation of Electronic Many-Qubit States Encoded in the Electron Spin of Quantum Dots via Single Photons
[20] | Hu C Y et al 2008 Phys. Rev. B 78 085307 | Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon
[21] | Peng Z H et al 2012 Phys. Rev. A 86 034305 | Atomic and photonic entanglement concentration via photonic Faraday rotation
[22] | Sun S et al 2016 Nat. Nanotechnol. 11 539 | A quantum phase switch between a single solid-state spin and a photon
[23] | Peng Z H et al 2015 Quantum Inf. Process. 14 2833 | Quantum controlled-not gate in the bad cavity regime
[24] | Cao Q T et al 2017 Phys. Rev. Lett. 118 033901 | Experimental Demonstration of Spontaneous Chirality in a Nonlinear Microresonator
[25] | Thompson R J, Rempe G and Kimble H J 1992 Phys. Rev. Lett. 68 1132 | Observation of normal-mode splitting for an atom in an optical cavity
[26] | Walls D F and Milburn G J 2008 Quantum Optics 2nd edn (New York: Springer) |
[27] | Purcell E M, Torrey H C and Pound R V 1946 Phys. Rev. 69 37 | Resonance Absorption by Nuclear Magnetic Moments in a Solid
[28] | An J H, Feng M and Oh C H 2009 Phys. Rev. A 79 032303 | Quantum-information processing with a single photon by an input-output process with respect to low- cavities
[29] | Vahala K J 2003 Nature 424 839 | Optical microcavities
[30] | Zhang Y et al 2017 J. Alloys Compd. 724 169 | Room temperature ferromagnetism in superconducting YBa2Cu3O7−δ/Y2BaCuO5 composites