[1] | Baranov D G, Wersäll M, Cuadra J et al 2017 ACS Photon. 5 24 | Novel Nanostructures and Materials for Strong Light–Matter Interactions
[2] | Cuadra J, Baranov D G, Wersäll M et al 2018 Nano Lett. 18 1777 | Observation of Tunable Charged Exciton Polaritons in Hybrid Monolayer WS 2 −Plasmonic Nanoantenna System
[3] | Törmä P and Barnes W L 2015 Rep. Prog. Phys. 78 013901 | Strong coupling between surface plasmon polaritons and emitters: a review
[4] | Flick J, Rivera N and Narang P 2018 Nanophotonics 7 1479 | Integrability of the rabi model
[5] | Xu D, Xiong X, Wu L et al 2018 Adv. Opt. Photon. 10 703 | Quantum plasmonics: new opportunity in fundamental and applied photonics
[6] | Zhou Z K, Liu J, Bao Y et al Prog. Quantum Electron. 65 1 |
[7] | Lidzey D G, Wenus J, Whittaker D M et al 2004 J. Lumin. 110 347 | Hybrid polaritons in strongly coupled microcavities: experiments and models
[8] | Holmes R J, Kéna-Cohen S, Menon V M et al 2006 Phys. Rev. B 74 235211 | Strong coupling and hybridization of Frenkel and Wannier-Mott excitons in an organic-inorganic optical microcavity
[9] | Wenus J, Parashkov R, Ceccarelli S et al 2006 Phys. Rev. B 74 235212 | Hybrid organic-inorganic exciton-polaritons in a strongly coupled microcavity
[10] | Lanty G, Zhang S, Lauret J S et al 2011 Phys. Rev. B 84 195449 | Hybrid cavity polaritons in a ZnO-perovskite microcavity
[11] | Holmes R J and Forrest S R 2004 Phys. Rev. Lett. 93 186404 | Strong Exciton-Photon Coupling and Exciton Hybridization in a Thermally Evaporated Polycrystalline Film of an Organic Small Molecule
[12] | Slootsky M, Liu X, Menon V M et al 2014 Phys. Rev. Lett. 112 076401 | Room Temperature Frenkel-Wannier-Mott Hybridization of Degenerate Excitons in a Strongly Coupled Microcavity
[13] | Luo X 2015 Sci. Chin. Ser. G 58 594201 | Principles of electromagnetic waves in metasurfaces
[14] | Gao P, Yao N, Wang C et al 2015 Appl. Phys. Lett. 106 093110 | Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens
[15] | Lidzey D G, Bradley D D C, Virgili T et al 1999 Phys. Rev. Lett. 82 3316 | Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities
[16] | Flatten L C, Coles D M, He Z et al 2017 Nat. Commun. 8 14097 | Electrically tunable organic–inorganic hybrid polaritons with monolayer WS2
[17] | Liu G B, Xiao D, Yao Y et al 2015 Chem. Soc. Rev. 44 2643 | Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides
[18] | Rodriguez S R, Amo A, Sagnes I et al 2016 Nat. Commun. 7 11887 | Interaction-induced hopping phase in driven-dissipative coupled photonic microcavities
[19] | Zhang S, Zhang H, Xu T et al 2018 Phys. Rev. B 97 235401 | Coherent and incoherent damping pathways mediated by strong coupling of two-dimensional atomic crystals with metallic nanogrooves
[20] | Zhu B, Chen X and Cui X 2015 Sci. Rep. 5 9218 | Exciton Binding Energy of Monolayer WS2
[21] | Abid I, Chen W, Yuan J et al 2017 ACS Photon. 4 1653 | Temperature-Dependent Plasmon–Exciton Interactions in Hybrid Au/MoSe 2 Nanostructures
[22] | Wen J, Wang H, Wang W et al 2017 Nano Lett. 17 4689 | Room-Temperature Strong Light–Matter Interaction with Active Control in Single Plasmonic Nanorod Coupled with Two-Dimensional Atomic Crystals
[23] | Vasa P, Pomraenke R, Cirmi G et al 2010 ACS Nano 4 7559 | Ultrafast Manipulation of Strong Coupling in Metal−Molecular Aggregate Hybrid Nanostructures
[24] | Coles D M, Somaschi N, Michetti P et al 2014 Nat. Mater. 13 712 | Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity
[25] | Zhang K, Xu Y, Chen T Y et al 2016 Opt. Lett. 41 5740 | Multimode photon-exciton coupling in an organic-dye-attached photonic quasicrystal
[26] | Balasubrahmaniyam M, Kar D, Sen P et al 2017 Appl. Phys. Lett. 110 171101 | Observation of subwavelength localization of cavity plasmons induced by ultra-strong exciton coupling
[27] | Yang H, Yao J, Wu X W et al 2017 J. Phys. Chem. C 121 25455 | Strong Plasmon–Exciton–Plasmon Multimode Couplings in Three-Layered Ag–J-Aggregates–Ag Nanostructures
[28] | Zhang K, Shi W B, Wang D et al 2016 Appl. Phys. Lett. 108 193111 | Couple molecular excitons to surface plasmon polaritons in an organic-dye-doped nanostructured cavity
[29] | Fraser M D, Höfling S and Yamamoto Y 2016 Nat. Mater. 15 1049 | Physics and applications of exciton–polariton lasers
[30] | Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370 | Optical Constants of the Noble Metals
[31] | Wang S, Li S, Chervy T et al 2016 Nano Lett. 16 4368 | Coherent Coupling of WS 2 Monolayers with Metallic Photonic Nanostructures at Room Temperature
[32] | Li Y, Chernikov A, Zhang X et al 2014 Phys. Rev. B 90 205422 | Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: , , , and
[33] | Gentile M J, Núñez-Sánchez S and Barnes W L 2014 Nano Lett. 14 2339 | Optical Field-Enhancement and Subwavelength Field-Confinement Using Excitonic Nanostructures
[34] | Fofang N T, Park T H, Neumann O et al 2008 Nano Lett. 8 3481 | Plexcitonic Nanoparticles: Plasmon−Exciton Coupling in Nanoshell−J-Aggregate Complexes
[35] | Schlather A E, Large N, Urban A S et al 2013 Nano Lett. 13 3281 | Near-Field Mediated Plexcitonic Coupling and Giant Rabi Splitting in Individual Metallic Dimers
[36] | O'Donnell K P and Chen X 1991 Appl. Phys. Lett. 58 2924 | Temperature dependence of semiconductor band gaps
[37] | Wu X, Gray S K and Pelton M 2010 Opt. Express 18 23633 | Quantum-dot-induced transparency in a nanoscale plasmonic resonator
[38] | Jiang P, Song G, Wang Y et al 2019 Opt. Express 27 16613 | Tunable strong exciton–plasmon–exciton coupling in WS 2 –J-aggregates–plasmonic nanocavity
[39] | Kimble H J 2008 Nature 453 1023 | The quantum internet
[40] | Chen G, Yu Y C, Zhuo X L et al 2013 Phys. Rev. B 87 195138 | Ab initio determination of local coupling interaction in arbitrary nanostructures: Application to photonic crystal slabs and cavities