[1] | Novoselov K S, Fal V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 Nature 490 192 | A roadmap for graphene
[2] | Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451 | Two-dimensional atomic crystals
[3] | Sun Z and Chang H 2014 ACS Nano 8 4133 | Graphene and Graphene-like Two-Dimensional Materials in Photodetection: Mechanisms and Methodology
[4] | Gao J, Zhang J, Liu H, Zhang Q and Zhao J 2013 Nanoscale 5 9785 | Structures, mobilities, electronic and magnetic properties of point defects in silicene
[5] | Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A and Gao H J 2013 Nano Lett. 13 685 | Buckled Silicene Formation on Ir(111)
[6] | Yang K, Huang W Q, Hu W, Huang G F and Wen S 2018 Nanoscale 10 14667 | Substrate-induced magnetism and topological phase transition in silicene
[7] | Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802 | Quantum Spin Hall Effect in Silicene and Two-Dimensional Germanium
[8] | Li L, Wang Y, Xie X, Li X B, Wang Y Q, Wu R, Sun H, Zhang S and Gao H J 2013 Nano Lett. 13 4671 | Two-Dimensional Transition Metal Honeycomb Realized: Hf on Ir(111)
[9] | Buscema M, Groenendijk D J, Blanter S I, Steele G A, van der Zant H S J and Castellanos-Gomez A 2014 Nano Lett. 14 3347 | Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors
[10] | Castellanos-Gomez A, Vicarelli L, Prada E, Isl, J O, Narasimha-Acharya K, Blanter S I, Groenendijk D J, Buscema M, Steele G A and Alvarez J 2014 2D Mater. 1 025001 | Isolation and characterization of few-layer black phosphorus
[11] | Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372 | Black phosphorus field-effect transistors
[12] | Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS Nano 8 4033 | Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility
[13] | Xia F, Wang H and Jia Y 2014 Nat. Commun. 5 4458 | Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics
[14] | Tran V, Soklaski R, Liang Y and Yang L 2014 Phys. Rev. B 89 235319 | Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus
[15] | Fei R and Yang L 2014 Nano Lett. 14 2884 | Strain-Engineering the Anisotropic Electrical Conductance of Few-Layer Black Phosphorus
[16] | Guan J, Zhu Z and Tománek D 2014 Phys. Rev. Lett. 113 226801 | High Stability of Faceted Nanotubes and Fullerenes of Multiphase Layered Phosphorus: A Computational Study
[17] | Zhao T, He C, Ma S, Zhang K, Peng X, Xie G and Zhong J 2015 J. Phys.: Condens. Matter 27 265301 | A new phase of phosphorus: the missed tricycle type red phosphorene
[18] | Wu M, Fu H, Zhou L, Yao K and Zeng X C 2015 Nano Lett. 15 3557 | Nine New Phosphorene Polymorphs with Non-Honeycomb Structures: A Much Extended Family
[19] | Zhu Z and Tománek D 2014 Phys. Rev. Lett. 112 176802 | Semiconducting Layered Blue Phosphorus: A Computational Study
[20] | Schusteritsch G, Uhrin M and Pickard C J 2016 Nano Lett. 16 2975 | Single-Layered Hittorf’s Phosphorus: A Wide-Bandgap High Mobility 2D Material
[21] | Wang H, Li X, Liu Z and Yang J 2017 Phys. Chem. Chem. Phys. 19 2402 | ψ-Phosphorene: a new allotrope of phosphorene
[22] | Zhang J L, Zhao S, Han C, Wang Z, Zhong S, Sun S, Guo R, Zhou X, Gu C D, Yuan K D et al 2016 Nano Lett. 16 4903 | Epitaxial Growth of Single Layer Blue Phosphorus: A New Phase of Two-Dimensional Phosphorus
[23] | Han W H, Kim S, Lee I H and Chang K J 2017 J. Phys. Chem. Lett. 8 4627 | Prediction of Green Phosphorus with Tunable Direct Band Gap and High Mobility
[24] | Oka H, Brovko O O, Corbetta M, Stepanyuk V S, Sander D and Kirschner J 2014 Rev. Mod. Phys. 86 1127 | Spin-polarized quantum confinement in nanostructures: Scanning tunneling microscopy
[25] | Son Y W, Cohen M L and Louie S G 2006 Nature 444 347 | Half-metallic graphene nanoribbons
[26] | Feldner H, Meng Z Y, Lang T C, Assaad F F, Wessel S and Honecker A 2011 Phys. Rev. Lett. 106 226401 | Dynamical Signatures of Edge-State Magnetism on Graphene Nanoribbons
[27] | Cheng S, Yu J, Ma T and Peres N M R 2015 Phys. Rev. B 91 075410 | Strain-induced edge magnetism at the zigzag edge of a graphene quantum dot
[28] | Viana-Gomes J, Pereira V M and Peres N M R 2009 Phys. Rev. B 80 245436 | Magnetism in strained graphene dots
[29] | Magda G, Jin X, Hagymási I, Vancsó P, Osváth Z, Nemes-Incze P, Hwang C, Biró L P and Tapasztó L 2014 Nature 514 608 | Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons
[30] | Yang L, Park C H, Son Y W, Cohen M L and Louie S G 2007 Phys. Rev. Lett. 99 186801 | Quasiparticle Energies and Band Gaps in Graphene Nanoribbons
[31] | Kou L, Tang C, Zhang Y, Heine T, Chen C and Frauenheim T 2012 J. Phys. Chem. Lett. 3 2934 | Tuning Magnetism and Electronic Phase Transitions by Strain and Electric Field in Zigzag MoS 2 Nanoribbons
[32] | Zhu Z, Li C, Yu W, Chang D, Sun Q and Jia Y 2014 Appl. Phys. Lett. 105 113105 | Magnetism of zigzag edge phosphorene nanoribbons
[33] | Du Y, Liu H, Xu B, Sheng L, Yin J, Duan C G and Wan X 2015 Sci. Rep. 5 8921 | Unexpected Magnetic Semiconductor Behavior in Zigzag Phosphorene Nanoribbons Driven by Half-Filled One Dimensional Band
[34] | Yang G, Xu S, Zhang W, Ma T and Wu C 2016 Phys. Rev. B 94 075106 | Room-temperature magnetism on the zigzag edges of phosphorene nanoribbons
[35] | Yazyev O V 2010 Rep. Prog. Phys. 73 056501 | Emergence of magnetism in graphene materials and nanostructures
[36] | Kotov V N, Uchoa B, Pereira V M, Guinea F and Neto A C 2012 Rev. Mod. Phys. 84 1067 | Electron-Electron Interactions in Graphene: Current Status and Perspectives
[37] | Fujita M, Wakabayashi K, Nakada K and Kusakabe K 1996 J. Phys. Soc. Jpn. 65 1920 | Peculiar Localized State at Zigzag Graphite Edge
[38] | Yang L, Cohen M L and Louie S G 2008 Phys. Rev. Lett. 101 186401 | Magnetic Edge-State Excitons in Zigzag Graphene Nanoribbons
[39] | Guinea F, Katsnelson M and Geim A 2010 Nat. Phys. 6 30 | Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering
[40] | Johari P and Shenoy V B 2012 ACS Nano 6 5449 | Tuning the Electronic Properties of Semiconducting Transition Metal Dichalcogenides by Applying Mechanical Strains
[41] | Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P and Shen Z X 2008 ACS Nano 2 2301 | Uniaxial Strain on Graphene: Raman Spectroscopy Study and Band-Gap Opening
[42] | Yang G, Li B, Zhang W, Ye M and Ma T 2017 J. Phys.: Condens. Matter 29 365601 | Strain-tuning of edge magnetism in zigzag graphene nanoribbons
[43] | Wang X, Jones A M, Seyler K L, Tran V, Jia Y, Zhao H, Wang H, Yang L, Xu X and Xia F 2015 Nat. Nanotechnol. 10 517 | Highly anisotropic and robust excitons in monolayer black phosphorus
[44] | Carvalho A, Rodin A and Neto A C 2014 Europhys. Lett. 108 47005 | Phosphorene nanoribbons
[45] | Peng X, Copple A and Wei Q 2014 J. Appl. Phys. 116 144301 | Edge effects on the electronic properties of phosphorene nanoribbons
[46] | Lieb E H 1989 Phys. Rev. Lett. 62 1201 | Two theorems on the Hubbard model
[47] | Ezawa M 2014 New J. Phys. 16 115004 | Topological origin of quasi-flat edge band in phosphorene
[48] | Hirsch J E 1985 Phys. Rev. B 31 4403 | Two-dimensional Hubbard model: Numerical simulation study
[49] | Blankenbecler R, Scalapino D and Sugar R 1981 Phys. Rev. D 24 2278 | Monte Carlo calculations of coupled boson-fermion systems. I
[50] | Santos R R D 2003 Braz. J. Phys. 33 36 | Introduction to quantum Monte Carlo simulations for fermionic systems
[51] | Zhang S et al 1995 Phys. Rev. Lett. 74 3652 | Constrained Path Quantum Monte Carlo Method for Fermion Ground States
[52] | Ma T, Lin H Q and Hu J 2013 Phys. Rev. Lett. 110 107002 | Quantum Monte Carlo Study of a Dominant -Wave Pairing Symmetry in Iron-Based Superconductors
[53] | Ma T, Zhang L, Chang C C, Hung H H and Scalettar R T 2018 Phys. Rev. Lett. 120 116601 | Localization of Interacting Dirac Fermions
[54] | Ma T, Yang F, Yao H and Lin H Q 2014 Phys. Rev. B 90 245114 | Possible triplet superconductivity in graphene at low filling
[55] | Ma T, Huang Z, Hu F and Lin H Q 2011 Phys. Rev. B 84 121410 | Pairing in graphene: A quantum Monte Carlo study
[56] | Wu Y, Liu G and Ma T 2013 Europhys. Lett. 104 27013 | Ground-state pairing correlations in the S 4 symmetric microscopic model for iron-based superconductors
[57] | Ma T, Lin H Q and Gubernatis J E 2015 Europhys. Lett. 111 47003 | Triplet p + ip pairing correlations in the doped Kane-Mele-Hubbard model: A quantum Monte Carlo study
[58] | Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 | The electronic properties of graphene
[59] | Herbut I F 2006 Phys. Rev. Lett. 97 146401 | Interactions and Phase Transitions on Graphene’s Honeycomb Lattice
[60] | Parr R G, Craig D P and Ross I G 1950 J. Chem. Phys. 18 1561 | Molecular Orbital Calculations of the Lower Excited Electronic Levels of Benzene, Configuration Interaction Included
[61] | Schüler M, Rösner M, Wehling T O, Lichtenstein A I and Katsnelson M I 2013 Phys. Rev. Lett. 111 036601 | Optimal Hubbard Models for Materials with Nonlocal Coulomb Interactions: Graphene, Silicene, and Benzene