Express Letter
Quantum Anomalous Hall Multilayers Grown by Molecular Beam Epitaxy
-
Abstract
Quantum anomalous Hall (QAH) effect is a quantum Hall effect that occurs without the need of external magnetic field. A system composed of multiple parallel QAH layers is an effective high Chern number QAH insulator and the key to the applications of the dissipationless chiral edge channels in low energy consumption electronics. Such a QAH multilayer can also be engineered into other exotic topological phases such as a magnetic Weyl semimetal with only one pair of Weyl points. This work reports the first experimental realization of QAH multilayers in the superlattices composed of magnetically doped (Bi,Sb)Te topological insulator and CdSe normal insulator layers grown by molecular beam epitaxy. The obtained multilayer samples show quantized Hall resistance , where is Planck's constant, is the elementary charge and is the number of the magnetic topological insulator layers, resembling a high Chern number QAH insulator. The QAH multilayers provide an excellent platform to study various topological states of matter. -
-
References
[1] Haldane F D M 2017 Rev. Mod. Phys. 89 040502 doi: 10.1103/RevModPhys.89.040502[2] Wang J, Lian B and Zhang S C 2015 Phys. Scr. 2015T164 014003 doi: 10.1088/0031-8949/2015/T164/014003[3] Zhang X and Zhang S C 2012 Proc. SPIE-Int. Soc. Opt. Eng. 8373 837309[4] Chang C Z, Zhang J, Feng X et al. 2013 Science 340 167 doi: 10.1126/science.1234414[5] Checkelsky J G, Yoshimi R, Tsukazaki A et al. 2014 Nat. Phys. 10 731 doi: 10.1038/nphys3053[6] Kou X, Guo S T, Fan Y et al. 2014 Phys. Rev. Lett. 113 137201 doi: 10.1103/PhysRevLett.113.137201[7] Kandala A, Richardella A, Kempinger S et al. 2015 Nat. Commun. 6 7434 doi: 10.1038/ncomms8434[8] Chang C Z, Zhao W, Kim D Y et al. 2015 Nat. Mater. 14 473 doi: 10.1038/nmat4204[9] Ou Y, Liu C, Jiang G et al. 2018 Adv. Mater. 30 1703062 doi: 10.1002/adma.201703062[10] Komiyama S, Sakuma H, Ikushima K and Hirakawa K 2006 Phys. Rev. B 73 045333 doi: 10.1103/PhysRevB.73.045333[11] Wang J, Lian B, Zhang H et al. 2013 Phys. Rev. Lett. 111 136801 doi: 10.1103/PhysRevLett.111.136801[12] Datta S 2006 Quantum Transport: Atom to Transistor New York: Cambridge University Press[13] Burkov A A and Balents L 2011 Phys. Rev. Lett. 107 127205 doi: 10.1103/PhysRevLett.107.127205[14] Eisenstein J P and MacDonald A H 2004 Nature 432 691 doi: 10.1038/nature03081[15] Eisenstein J P 2014 Annu. Rev. Condens. Matter Phys. 5 159 doi: 10.1146/annurev-conmatphys-031113-133832[16] Shyju T S, Anandhi S, Indirajith R and Gopalakrishnan R 2011 J. Cryst. Growth 337 38 doi: 10.1016/j.jcrysgro.2011.09.051[17] Yan B and Felser C 2017 Annu. Rev. Condens. Matter Phys. 8 337 doi: 10.1146/annurev-conmatphys-031016-025458[18] Weng H, Fang C, Fang Z et al. 2015 Phys. Rev. X 5 011029 doi: 10.1103/PhysRevX.5.011029[19] Huang S M, Xu S Y, Belopolski I et al. 2015 Nat. Commun. 6 7373 doi: 10.1038/ncomms8373[20] Xu S Y, Belopolski I, Alidoust N et al. 2015 Science 349 613 doi: 10.1126/science.aaa9297[21] Lv B Q, Weng H M, F B B et al. 2015 Phys. Rev. X 5 031013 doi: 10.1103/PhysRevX.5.031013[22] Yang L X, Liu Z K, Sun Y et al. 2015 Nat. Phys. 11 728 doi: 10.1038/nphys3425[23] Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101 doi: 10.1103/PhysRevB.83.205101[24] Xu G, Weng H, Wang Z et al. 2011 Phys. Rev. Lett. 107 186806 doi: 10.1103/PhysRevLett.107.186806[25] Bulmash D, Liu C X and Qi X L 2014 Phys. Rev. B 89 081106R doi: 10.1103/PhysRevB.89.081106 -
Related Articles
-
Supplements
Other Related Supplements
-
Cover image
60KB
-
-
Cited by
Periodical cited type(4)
1. Chen, Y.-Q., Xu, Y., Ma, Y.-Q. et al. Improving performance of screening MM/PBSA in protein-ligand interactions via machine learning. Chinese Physics B, 2025, 34(1): 018701. DOI:10.1088/1674-1056/ad8ecb 2. Lan, P.D., Nissley, D.A., O’Brien, E.P. et al. Deciphering the free energy landscapes of SARS-CoV-2 wild type and Omicron variant interacting with human ACE2. Journal of Chemical Physics, 2024, 160(5): 055101. DOI:10.1063/5.0188053 3. Xu, Y., Huang, S.-W., Ding, H.-M. et al. Molecular dynamics simulations on the interactions between nucleic acids and a phospholipid bilayer. Chinese Physics B, 2024, 33(2): 028701. DOI:10.1088/1674-1056/ad1178 4. Zhou, Y., Lin, X. Binding kinetics of ten small-molecule drug candidates on SARS-CoV-2 3CLpro revealed by biomolecular simulations. Medicine in Novel Technology and Devices, 2023. DOI:10.1016/j.medntd.2023.100257 Other cited types(0)