Express Letter

Quantum Anomalous Hall Multilayers Grown by Molecular Beam Epitaxy

Funds: Supported by the National Key Research and Development Program of China under Grant No 2017YFA0303303, the National Natural Science Foundation of China under Grant No 51661135024, and the Beijing Advanced Innovation Center for Future Chip (ICFC).
  • Received Date: June 07, 2018
  • Published Date: June 30, 2018
  • Quantum anomalous Hall (QAH) effect is a quantum Hall effect that occurs without the need of external magnetic field. A system composed of multiple parallel QAH layers is an effective high Chern number QAH insulator and the key to the applications of the dissipationless chiral edge channels in low energy consumption electronics. Such a QAH multilayer can also be engineered into other exotic topological phases such as a magnetic Weyl semimetal with only one pair of Weyl points. This work reports the first experimental realization of QAH multilayers in the superlattices composed of magnetically doped (Bi,Sb)2Te3 topological insulator and CdSe normal insulator layers grown by molecular beam epitaxy. The obtained multilayer samples show quantized Hall resistance h/Ne2, where h is Planck's constant, e is the elementary charge and N is the number of the magnetic topological insulator layers, resembling a high Chern number QAH insulator. The QAH multilayers provide an excellent platform to study various topological states of matter.
  • Article Text

  • [1]
    Haldane F D M 2017 Rev. Mod. Phys. 89 040502 doi: 10.1103/RevModPhys.89.040502

    CrossRef Google Scholar

    [2]
    Wang J, Lian B and Zhang S C 2015 Phys. Scr. 2015T164 014003 doi: 10.1088/0031-8949/2015/T164/014003

    CrossRef Google Scholar

    [3]
    Zhang X and Zhang S C 2012 Proc. SPIE-Int. Soc. Opt. Eng. 8373 837309

    Google Scholar

    [4]
    Chang C Z, Zhang J, Feng X et al. 2013 Science 340 167 doi: 10.1126/science.1234414

    CrossRef Google Scholar

    [5]
    Checkelsky J G, Yoshimi R, Tsukazaki A et al. 2014 Nat. Phys. 10 731 doi: 10.1038/nphys3053

    CrossRef Google Scholar

    [6]
    Kou X, Guo S T, Fan Y et al. 2014 Phys. Rev. Lett. 113 137201 doi: 10.1103/PhysRevLett.113.137201

    CrossRef Google Scholar

    [7]
    Kandala A, Richardella A, Kempinger S et al. 2015 Nat. Commun. 6 7434 doi: 10.1038/ncomms8434

    CrossRef Google Scholar

    [8]
    Chang C Z, Zhao W, Kim D Y et al. 2015 Nat. Mater. 14 473 doi: 10.1038/nmat4204

    CrossRef Google Scholar

    [9]
    Ou Y, Liu C, Jiang G et al. 2018 Adv. Mater. 30 1703062 doi: 10.1002/adma.201703062

    CrossRef Google Scholar

    [10]
    Komiyama S, Sakuma H, Ikushima K and Hirakawa K 2006 Phys. Rev. B 73 045333 doi: 10.1103/PhysRevB.73.045333

    CrossRef Google Scholar

    [11]
    Wang J, Lian B, Zhang H et al. 2013 Phys. Rev. Lett. 111 136801 doi: 10.1103/PhysRevLett.111.136801

    CrossRef Google Scholar

    [12]
    Datta S 2006 Quantum Transport: Atom to Transistor New York: Cambridge University Press

    Google Scholar

    [13]
    Burkov A A and Balents L 2011 Phys. Rev. Lett. 107 127205 doi: 10.1103/PhysRevLett.107.127205

    CrossRef Google Scholar

    [14]
    Eisenstein J P and MacDonald A H 2004 Nature 432 691 doi: 10.1038/nature03081

    CrossRef Google Scholar

    [15]
    Eisenstein J P 2014 Annu. Rev. Condens. Matter Phys. 5 159 doi: 10.1146/annurev-conmatphys-031113-133832

    CrossRef Google Scholar

    [16]
    Shyju T S, Anandhi S, Indirajith R and Gopalakrishnan R 2011 J. Cryst. Growth 337 38 doi: 10.1016/j.jcrysgro.2011.09.051

    CrossRef Google Scholar

    [17]
    Yan B and Felser C 2017 Annu. Rev. Condens. Matter Phys. 8 337 doi: 10.1146/annurev-conmatphys-031016-025458

    CrossRef Google Scholar

    [18]
    Weng H, Fang C, Fang Z et al. 2015 Phys. Rev. X 5 011029 doi: 10.1103/PhysRevX.5.011029

    CrossRef Google Scholar

    [19]
    Huang S M, Xu S Y, Belopolski I et al. 2015 Nat. Commun. 6 7373 doi: 10.1038/ncomms8373

    CrossRef Google Scholar

    [20]
    Xu S Y, Belopolski I, Alidoust N et al. 2015 Science 349 613 doi: 10.1126/science.aaa9297

    CrossRef Google Scholar

    [21]
    Lv B Q, Weng H M, F B B et al. 2015 Phys. Rev. X 5 031013 doi: 10.1103/PhysRevX.5.031013

    CrossRef Google Scholar

    [22]
    Yang L X, Liu Z K, Sun Y et al. 2015 Nat. Phys. 11 728 doi: 10.1038/nphys3425

    CrossRef Google Scholar

    [23]
    Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101 doi: 10.1103/PhysRevB.83.205101

    CrossRef Google Scholar

    [24]
    Xu G, Weng H, Wang Z et al. 2011 Phys. Rev. Lett. 107 186806 doi: 10.1103/PhysRevLett.107.186806

    CrossRef Google Scholar

    [25]
    Bulmash D, Liu C X and Qi X L 2014 Phys. Rev. B 89 081106R doi: 10.1103/PhysRevB.89.081106

    CrossRef Google Scholar

  • Related Articles

    [1]Hong-ming Ding, Yue-wen Yin, Song-di Ni, Yan-jing Sheng, Yu-qiang Ma. Accurate Evaluation on the Interactions of SARS-CoV-2 with Its Receptor ACE2 and Antibodies CR3022/CB6 [J]. Chin. Phys. Lett., 2021, 38(1): 018701. doi: 10.1088/0256-307X/38/1/018701
    [2]HE Li-Ping, DAI Jun, SUN Yue, WANG Jing-Yi, LÜ Hui-Bin, WANG Shu-Fang, JIN Kui-Juan, ZHOU Yue-Liang, YANG Guo-Zhen. Label-Free and Real-Time Detection of Antigen-Antibody Capture Processes Using the Oblique-Incidence Reflectivity Difference Technique [J]. Chin. Phys. Lett., 2012, 29(7): 070702. doi: 10.1088/0256-307X/29/7/070702
    [3]JIA Er-Wei, PANG Hou-Rong. KKN and KKN Molecular States with I=1/2, 3/2 and JP=1/2+ Studied with Three-Body Faddeev Calculations [J]. Chin. Phys. Lett., 2011, 28(6): 061401. doi: 10.1088/0256-307X/28/6/061401
    [4]LI Wei, GAO Zong-Mao, GU Jiao. Effects of Variant Rates and Noise on Epidemic Spreading [J]. Chin. Phys. Lett., 2011, 28(5): 058903. doi: 10.1088/0256-307X/28/5/058903
    [5]ZHANG Ping, WANG Hai-Jun. Monte Carlo Simulation on Growth of Antibody-Antigen Complexes: the Role of Unequal Reactivity [J]. Chin. Phys. Lett., 2010, 27(3): 038701. doi: 10.1088/0256-307X/27/3/038701
    [6]XIA Tian, ZHOU Shu-Yu, CHEN Peng, LI Lin, HONG Tao, WANG Yu-Zhu. Continuous Imaging of a Single Neutral Atom in a Variant Magneto-Optical Trap\hyperlinks* [J]. Chin. Phys. Lett., 2010, 27(2): 023701. doi: 10.1088/0256-307X/27/2/023701
    [7]ZHOU Lin-xiang, J.R. Hardy, XU Xin. Molecular Dynamics Simulation of Binary Fluorozirconate Glass ZrF4.BaF2 [J]. Chin. Phys. Lett., 1998, 15(5): 326-328.
    [8]ZHAO Meishan (Meishan ZHAO). Variational Versus Nonvariational Calculations for H2Br Molecular Scattering [J]. Chin. Phys. Lett., 1994, 11(1): 16-19.
    [9]SHAO Jun. Structural Change of SiO2 Glass Under High Pressure -- a Molecular Dynamics Study [J]. Chin. Phys. Lett., 1993, 10(11): 669-672.
    [10]ZHENG Youfeng, WANG Wenhua, LIN Jingu, SHE Yongbo, FIU Kejian. Time-Resolved Infrared Detection of Molecular Nitrogen and Hydrogen Complexes of (η6-C6H6)Cr(CO)2 in Gas Phase [J]. Chin. Phys. Lett., 1992, 9(6): 329-332.
  • Other Related Supplements

  • Cited by

    Periodical cited type(4)

    1. Chen, Y.-Q., Xu, Y., Ma, Y.-Q. et al. Improving performance of screening MM/PBSA in protein-ligand interactions via machine learning. Chinese Physics B, 2025, 34(1): 018701. DOI:10.1088/1674-1056/ad8ecb
    2. Lan, P.D., Nissley, D.A., O’Brien, E.P. et al. Deciphering the free energy landscapes of SARS-CoV-2 wild type and Omicron variant interacting with human ACE2. Journal of Chemical Physics, 2024, 160(5): 055101. DOI:10.1063/5.0188053
    3. Xu, Y., Huang, S.-W., Ding, H.-M. et al. Molecular dynamics simulations on the interactions between nucleic acids and a phospholipid bilayer. Chinese Physics B, 2024, 33(2): 028701. DOI:10.1088/1674-1056/ad1178
    4. Zhou, Y., Lin, X. Binding kinetics of ten small-molecule drug candidates on SARS-CoV-2 3CLpro revealed by biomolecular simulations. Medicine in Novel Technology and Devices, 2023. DOI:10.1016/j.medntd.2023.100257

    Other cited types(0)

Catalog

    Article views (2271) PDF downloads (756) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return