[1] | Sauerbrey G 1959 Physik 155 206 | Verwendung von Schwingquarzen zur W�gung d�nner Schichten und zur Mikrow�gung
[2] | Yao Y, Chen X D, Li X Y, Chen X P and Li N 2014 Sens. Actuators B 191 779 | Investigation of the stability of QCM humidity sensor using graphene oxide as sensing films
[3] | Sun Y G and Wang H H 2007 Adv. Mater. 19 2818 | High-Performance, Flexible Hydrogen Sensors That Use Carbon Nanotubes Decorated with Palladium Nanoparticles
[4] | Pei Z F, Ma X F, Ding P F, Zhang W M, Luo Z Y and Li G 2010 Sensors 10 8275 | Toxicity of the organophosphate chemical warfare agents GA, GB, and VX: Implications for public protection
[5] | Li X Y, Chen X D, Yao Y, Li N and Chen X P 2014 Sens. Actuators B 196 183 | High-stability quartz crystal microbalance ammonia sensor utilizing graphene oxide isolation layer
[6] | Kimura M, Liu Y, Sakai R, Sato S, Hirai T, Fukawa T and Mihara T 2011 Sens. Mater. 23 359 |
[7] | Wang X F, Ding B, Sun M, Yu J Y and Sun G 2010 Sens. Actuators B 144 11 | Nanofibrous polyethyleneimine membranes as sensitive coatings for quartz crystal microbalance-based formaldehyde sensors
[8] | Shi S, Reisberg S, Anquetin G, Noël V, Pham M C and Piro B 2015 Biosens. Bioelectron. 72 205 | General approach for electrochemical detection of persistent pharmaceutical micropollutants: Application to acetaminophen
[9] | Escobar-Teran F, Arnau A, Garcia J V, Jiménez Y, Perrot H and Sel O 2016 Electrochem. Commun. 70 73 | Gravimetric and dynamic deconvolution of global EQCM response of carbon nanotube based electrodes by Ac-electrogravimetry
[10] | Yadav S K, Agrawal B, Chandra P and Goyal R N 2014 Biosens. Bioelectron. 55 337 | In vitro chloramphenicol detection in a Haemophilus influenza model using an aptamer-polymer based electrochemical biosensor
[11] | Lai G S, Zhang H, Tamanna T and Yu A 2014 Anal. Chem. 86 1789 | Ultrasensitive Immunoassay Based on Electrochemical Measurement of Enzymatically Produced Polyaniline
[12] | Miguel F H C, Benedetti T M, Torresi R M and de Torresi S I C 2014 Electrochem. Commun. 48 164 | QCM-D studies of polypyrrole influence on structure stabilization of β phase of Ni(OH)2 nanoparticles during electrochemical cycling
[13] | Levi M D, Shpigel N, Sigalov S, Dargel V, Daikhin L and Aurbach D 2017 Electrochim. Acta 232 271 | In Situ Porous Structure Characterization of Electrodes for Energy Storage and Conversion by EQCM-D: a Review
[14] | Lu Y C, Song S Y, Hou C X, Pang S, Li X M, Wu X W, Shao C, Pei Y X and Pei Z C 2018 Chin. Chem. Lett. 29 65 | Facile fabrication of branched-chain carbohydrate chips for studying carbohydrate-protein interactions by QCM biosensor
[15] | Wu Y F, Xue P, Kang Y J and Hui K M 2013 Anal. Chem. 85 3166 | Highly Specific and Ultrasensitive Graphene-Enhanced Electrochemical Detection of Low-Abundance Tumor Cells Using Silica Nanoparticles Coated with Antibody-Conjugated Quantum Dots
[16] | Zhang S L, Bai H H, Pi J, Yang P H and Cai J Y 2015 Anal. Chem. 87 4797 | Label-Free Quartz Crystal Microbalance with Dissipation Monitoring of Resveratrol Effect on Mechanical Changes and Folate Receptor Expression Levels of Living MCF-7 Cells: A Model for Screening of Drugs
[17] | Jia X E, Zhang Z W, Tan L, Zhang Y Y, Xie Q J, He Z M and Yao S Z 2006 Chin. Chem. Lett. 17 509 |
[18] | Kovář D, Farka Z k and Skládal P 2014 Anal. Chem. 86 8680 | Detection of Aerosolized Biological Agents Using the Piezoelectric Immunosensor
[19] | Lee J, Atmeh M and Berman D 2017 Carbon 120 11 | Effect of trapped water on the frictional behavior of graphene oxide layers sliding in water environment
[20] | Chen D Q, Sun X Y, Zhang K H, Fan G K, Wang Y, Li G and Hu R F 2017 Sensors 17 1681 | A Noncontact Dibutyl Phthalate Sensor Based on a Wireless-Electrodeless QCM-D Modified with Nano-Structured Nickel Hydroxide
[21] | Hu R F, Zhang K H, Fan G K, Luo Z Y and Li G 2015 Meas. Sci. Technol. 26 055102 | Development of a high-sensitivity plasticizer sensor based on a quartz crystal microbalance modified with a nanostructured nickel hydroxide film
[22] | Kurosawa S, Park J W, Aizawa H, Wakida S I, Tao H and Ishihara K 2006 Biosens. Bioelectron. 22 473 | Quartz crystal microbalance immunosensors for environmental monitoring
[23] | Wei X R, Qu X L, Ding L, Hu J T and Jiang W 2016 Environ. Pollut. 219 1 | Role of bovine serum albumin and humic acid in the interaction between SiO2 nanoparticles and model cell membranes
[24] | Wang J, Yang J S and Li J Y 2007 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 687 | Energy trapping of thickness-shear vibration modes of elastic plates with functionally graded materials
[25] | Wang J, Shen L J and Yang J S 2008 Ultrasonics 48 150 | Effects of electrodes with continuously varying thickness on energy trapping in thickness-shear mode quartz resonators
[26] | Shockley W, Curran D R and Koneval D J 1967 J. Acoust. Soc. Am. 41 981 | Trapped‐Energy Modes in Quartz Filter Crystals
[27] | Huang X H, Pan W, Hu J G and Bai Q S 2018 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65 1888 | The Exploration and Confirmation of the Maximum Mass Sensitivity of Quartz Crystal Microbalance
[28] | Mecea V M 2006 Sens. Actuators A 128 270 | Is quartz crystal microbalance really a mass sensor?
[29] | Josse F, Lee Y, Martin S J and Cernosek R W 1998 Anal. Chem. 70 237 | Analysis of the Radial Dependence of Mass Sensitivity for Modified-Electrode Quartz Crystal Resonators
[30] | Gao J Y, Huang X H and Wang Y 2013 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60 2031 | The modified design of ring electrode quartz crystal resonator for uniform mass sensitivity distribution
[31] | Hillier A C and Ward M D 1992 Anal. Chem. 64 2539 | Scanning electrochemical mass sensitivity mapping of the quartz crystal microbalance in liquid media
[32] | Ward M D and Delawski E J 1991 Anal. Chem. 63 886 | Radial mass sensitivity of the quartz crystal microbalance in liquid media
[33] | Huang X H, Bai Q S, Hu J G and Hou D 2017 Sensors 17 1785 | Use of quartz vibration for weighing thin films on a microbalance
[34] | Huang X H, Bai Q S, Zhou Q and Hu J G 2017 Sensors 17 1476 | The Resistance–Amplitude–Frequency Effect of In–Liquid Quartz Crystal Microbalance