Charge Density Wave States in 2H-MoTe$_{2}$ Revealed by Scanning Tunneling Microscopy

Funds: Supported by the National Key Research and Development Program of China under Grant Nos 2016YFA0301003 and 2016YFA0300403, and the National Natural Science Foundation of China under Grant Nos 11521404, 11634009, U1632102, 11504230, 11674222, 11574202, 11674226, 11574201 and U1632272.
  • Received Date: February 11, 2018
  • Published Date: May 31, 2018
  • 2H- and 1T$'$-phase monolayer MoTe$_{2}$ films on highly oriented pyrolytic graphite are studied using scanning tunneling microscopy and spectroscopy (STM/STS). The phase transition of MoTe$_{2}$ can be controlled by a post-growth annealing process, and the intermediate state during the phase transition is directly observed by STM. For 2H-MoTe$_{2}$, inversion domain boundaries are presented as bright lines at high sample bias, but as dark lines at lower sample bias. The $dI/dV$ mappings reveal the distinct distributions of electronic states between domain boundaries and interiors of domains. It should be noted that a $2\times2$ periodic structure is clearly discernable inside the domains, where the STS measurement shows a small dip of size $\sim$150 meV at the vicinity of the Fermi level, indicating that the $2\times2$ periodic structure may be an incommensurate charge density wave. Moreover, a $4\times4$ periodic structure appears in 2H-MoTe$_{2}$ grown at a higher substrate temperature.
  • Article Text

  • [1]
    Zhu Z Y, Cheng Y C and Schwingenschlögl U 2011 Phys. Rev. B 84 153402 doi: 10.1103/PhysRevB.84.153402

    CrossRef Google Scholar

    [2]
    Sun L, Yan J, Zhan D, Liu L, Hu H et al. 2013 Phys. Rev. Lett. 111 126801 doi: 10.1103/PhysRevLett.111.126801

    CrossRef Google Scholar

    [3]
    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev OV and Kis A 2017 Nat. Rev. Mater. 2 17033 doi: 10.1038/natrevmats.2017.33

    CrossRef Google Scholar

    [4]
    Zheng H, Bian G, Chang G, Lu H, Xu S Y et al. 2016 Phys. Rev. Lett. 117 266804 doi: 10.1103/PhysRevLett.117.266804

    CrossRef Google Scholar

    [5]
    Dai J, Calleja E, Alldredge J, Zhu X, Li L et al. 2014 Phys. Rev. B 89 165140 doi: 10.1103/PhysRevB.89.165140

    CrossRef Google Scholar

    [6]
    Ugeda M M, Bradley A J, Zhang Y, Onishi S, Chen Y et al. 2016 Nat. Phys. 12 92 doi: 10.1038/nphys3527

    CrossRef Google Scholar

    [7]
    Barja S, Wickenburg S, Liu Z F, Zhang Y, Ryu H et al. 2016 Nat. Phys. 12 751 doi: 10.1038/nphys3730

    CrossRef Google Scholar

    [8]
    Yang H T, Tao H J and Zhao Z X 1998 Chin. Phys. Lett. 15 123 doi: 10.1088/0256-307X/15/2/017

    CrossRef Google Scholar

    [9]
    Qi Y, Naumov P G, Ali M N, Rajamathi C R, Schnelle W et al. 2016 Nat. Commun. 7 11038 doi: 10.1038/ncomms11038

    CrossRef Google Scholar

    [10]
    Pan X C, Chen X, Liu H, Feng Y, Wei Z et al. 2015 Nat. Commun. 6 7805 doi: 10.1038/ncomms8805

    CrossRef Google Scholar

    [11]
    Kang D, Zhou Y, Wei Y, Yang C, Guo J et al. 2015 Nat. Commun. 6 7804 doi: 10.1038/ncomms8804

    CrossRef Google Scholar

    [12]
    Qian X, Liu J, Fu L and Li J 2014 Science 346 1344 doi: 10.1126/science.1256815

    CrossRef Google Scholar

    [13]
    Wilson J A and Yoffe A D 1969 Adv. Phys. 18 193 doi: 10.1080/00018736900101307

    CrossRef Google Scholar

    [14]
    Eda G, Fujita T, Yamaguchi H, Voiry D, Chen M and Chhowalla M 2012 ACS Nano 6 7311 doi: 10.1021/nn302422x

    CrossRef Google Scholar

    [15]
    Dawson W G and Bullett D W 1987 J. Phys. C 20 6159 doi: 10.1088/0022-3719/20/36/017

    CrossRef Google Scholar

    [16]
    Tang S, Zhang C, Wong D, Pedramrazi Z, Tsai H Z et al. 2017 Nat. Phys. 13 683 doi: 10.1038/nphys4174

    CrossRef Google Scholar

    [17]
    Fei Z, Palomaki T, Wu S, Zhao W, Cai X et al. 2017 Nat. Phys. 13 677 doi: 10.1038/nphys4091

    CrossRef Google Scholar

    [18]
    Wu S, Fatemi V, Gibson Q D, Watanabe K, Taniguchi T, Cava R J and Jarillo-Herrero P 2018 Science 359 76 doi: 10.1126/science.aan6003

    CrossRef Google Scholar

    [19]
    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271 doi: 10.1021/nl903868w

    CrossRef Google Scholar

    [20]
    Zhang Y, Chang T R, Zhou B, Cui Y T, Yan H et al. 2013 Nat. Nanotechnol. 9 111 doi: 10.1038/nnano.2013.277

    CrossRef Google Scholar

    [21]
    Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805 doi: 10.1103/PhysRevLett.105.136805

    CrossRef Google Scholar

    [22]
    Baugher B W H, Churchill H O H, Yang Y and Jarillo-Herrero P 2013 Nano Lett. 13 4212 doi: 10.1021/nl401916s

    CrossRef Google Scholar

    [23]
    Kang K, Xie S, Huang L, Han Y, Huang P Y et al. 2015 Nature 520 656 doi: 10.1038/nature14417

    CrossRef Google Scholar

    [24]
    Geim A K and Grigorieva I V 2013 Nature 499 419 doi: 10.1038/nature12385

    CrossRef Google Scholar

    [25]
    Lee C H, Lee G H, Zande AM van der, Chen W, Li Y et al. 2014 Nat. Nanotechnol. 9 676 doi: 10.1038/nnano.2014.150

    CrossRef Google Scholar

    [26]
    Kadir N A A, Ismail E I, Latiff A A, Ahmad H, Arof H and Harun S W 2017 Chin. Phys. Lett. 34 014202 doi: 10.1088/0256-307X/34/1/014202

    CrossRef Google Scholar

    [27]
    Chen J, Wang G, Tang Y, Tian H, Xu J et al. 2017 ACS Nano 11 3282 doi: 10.1021/acsnano.7b00556

    CrossRef Google Scholar

    [28]
    Naylor C H, Parkin W M, Ping J, Gao Z, Zhou Y R et al. 2016 Nano Lett. 16 4297 doi: 10.1021/acs.nanolett.6b01342

    CrossRef Google Scholar

    [29]
    Yu Y, Wang G, Qin S, Wu N, Wang Z, He K and Zhang X A 2017 Carbon 115 526 doi: 10.1016/j.carbon.2017.01.026

    CrossRef Google Scholar

    [30]
    Qiu H, Xu T, Wang Z, Ren W, Nan H et al. 2013 Nat. Commun. 4 2642 doi: 10.1038/ncomms3642

    CrossRef Google Scholar

    [31]
    Cai L, He J, Liu Q, Yao T, Chen L et al. 2015 J. Am. Chem. Soc. 137 2622 doi: 10.1021/ja5120908

    CrossRef Google Scholar

    [32]
    Bao W, Borys N J, Ko C, Suh J, Fan W et al. 2015 Nat. Commun. 6 7993 doi: 10.1038/ncomms8993

    CrossRef Google Scholar

    [33]
    Zande AM van der, Huang P Y, Chenet D A, Berkelbach T C, You Y M et al. 2013 Nat. Mater. 12 554 doi: 10.1038/nmat3633

    CrossRef Google Scholar

    [34]
    Liu H, Jiao L, Yang F, Cai Y, Wu X et al. 2014 Phys. Rev. Lett. 113 066105 doi: 10.1103/PhysRevLett.113.066105

    CrossRef Google Scholar

    [35]
    Núñez-Regueiro M D, Lopez-Castillo J M and Ayache C 1985 Phys. Rev. Lett. 55 1931 doi: 10.1103/PhysRevLett.55.1931

    CrossRef Google Scholar

    [36]
    Fu W, Chen Y, Lin J, Wang X, Zeng Q et al. 2016 Chem. Mater. 28 7613 doi: 10.1021/acs.chemmater.6b02334

    CrossRef Google Scholar

    [37]
    Böker T, Severin R, Müller A, Janowitz C, Manzke R et al. 2001 Phys. Rev. B 64 235305 doi: 10.1103/PhysRevB.64.235305

    CrossRef Google Scholar

    [38]
    Qiao S, Li X, Wang N, Ruan W, Ye C et al. 2017 Phys. Rev. X 7 041054 doi: 10.1103/PhysRevX.7.041054

    CrossRef Google Scholar

    [39]
    Cho D, Cho Y H, Cheong S W, Kim K S and Yeom H W 2015 Phys. Rev. B 92 085132 doi: 10.1103/PhysRevB.92.085132

    CrossRef Google Scholar

    [40]
    Jiao L, Liu H, Chen J, Yi Y, Chen W et al. 2015 New J. Phys. 17 053023 doi: 10.1088/1367-2630/17/5/053023

    CrossRef Google Scholar

  • Related Articles

    [1]LI Qing, Shiro Yamazaki, Toyoaki Eguchi, MA Xu-Cun, JIA Jin-Feng, XUE Qi-Kun, Yukio Hasegawa. Self-Assembly of TBrPP-Co Molecules on an Ag/Si(111) Surface Studied by Scanning Tunneling Microscopy [J]. Chin. Phys. Lett., 2010, 27(2): 026801. doi: 10.1088/0256-307X/27/2/026801
    [2]GE Si-Ping, Lü Chao, ZHAO Ru-Guang. Adsorption of L-Alanine on Cu(111) Studied by Scanning Tunnelling Microscopy [J]. Chin. Phys. Lett., 2006, 23(6): 1558-1561.
    [3]BAI Yu-Lin, ZHOU Xiao-Lin, CHEN Xiang-Rong, GOU Qing-Quan. First-Principles Calculations of Scanning-Tunneling-Microscopy Images of Ar Atoms Adsorbed on a Graphite Sheet [J]. Chin. Phys. Lett., 2003, 20(11): 2019-2022.
    [4]LI Qun-Xiang, YANG Jin-Long, YUAN Lan-Feng, HOU Jian-Guo, ZHU Qing-Shi. Theoretical Scanning Tunneling Microscopy Images of Metal(Fe, Co, Ni, and Cu) Phthalocyanines [J]. Chin. Phys. Lett., 2001, 18(9): 1234-1236.
    [5]WANG De-liang, U. Geyer. Growth of Ni Films Observed by Scanning Tunneling Microscopy and X-ray [J]. Chin. Phys. Lett., 1999, 16(5): 370-372.
    [6]WANG De-liang, U. Geyer, S. Schneider. Crystallization of Ternary Amorphous Ni-Y-AI Films Observed by Scanning Tunneling Microscopy [J]. Chin. Phys. Lett., 1998, 15(12): 901-903.
    [7]WANG Fu-he, YANG Jin-long, LI Jia-ming. Theoretical Study of Extraction of a Single Al Atom from Al(111) Surface by Scanning Tunneling Microscopy W Tip [J]. Chin. Phys. Lett., 1998, 15(11): 825-827.
    [8]YANG Hai-tao, TAO Hong-jie, ZHAO Zhong-xian. Charge-Density Wave in 2H-NbSe2 Observed by Scanning Tunneling Microscopy at 4.3K [J]. Chin. Phys. Lett., 1998, 15(2): 123-124.
    [9]LI Xiangyang, CHENG Huansheng, YANG Fujia, YANG Xinju, YANG Jun. Ni-B Nanometer Particles Observed by Scanning Tunneling Microscopy [J]. Chin. Phys. Lett., 1994, 11(9): 561-564.
    [10]TANG Xiaowei. A Nuclear Detector Using Scanning Tunneling Microscopy [J]. Chin. Phys. Lett., 1993, 10(4): 209-210.

Catalog

    Article views (506) PDF downloads (1083) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return