Express Letter

Atomic-Ordering-Induced Quantum Phase Transition between Topological Crystalline Insulator and Topological Insulator

  • Received Date: February 20, 2018
  • Published Date: April 30, 2018
  • Topological phase transition in a single material usually refers to transitions between a trivial band insulator and a topological Dirac phase, and the transition may also occur between different classes of topological Dirac phases. It is a fundamental challenge to realize quantum transition between nontrivial topological insulator (TI) and topological crystalline insulator (TCI) in one material because TI and TCI have different requirements on the number of band inversions. The TIs must have an odd number of band inversions over all the time-reversal invariant momenta, whereas the newly discovered TCIs, as a distinct class of the topological Dirac materials protected by the underlying crystalline symmetry, owns an even number of band inversions. Taking PbSnTe alloy as an example, here we demonstrate that the atomic-ordering is an effective way to tune the symmetry of the alloy so that we can electrically switch between TCI phase and TI phase in a single material. Our results suggest that the atomic-ordering provides a new platform towards the realization of reversibly switching between different topological phases to explore novel applications.
  • Article Text

  • [1]
    Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802 doi: 10.1103/PhysRevLett.95.146802

    CrossRef Google Scholar

    [2]
    Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757 doi: 10.1126/science.1133734

    CrossRef Google Scholar

    [3]
    König M et al. 2007 Science 318 766 doi: 10.1126/science.1148047

    CrossRef Google Scholar

    [4]
    Chen Y L et al. 2009 Science 325 178 doi: 10.1126/science.1173034

    CrossRef Google Scholar

    [5]
    Zhang H, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438 doi: 10.1038/nphys1270

    CrossRef Google Scholar

    [6]
    Qi X L and Zhang S C 2010 Phys. Today 63 33 doi: 10.1063/1.3293411

    CrossRef Google Scholar

    [7]
    Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 doi: 10.1103/RevModPhys.82.3045

    CrossRef Google Scholar

    [8]
    Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 doi: 10.1103/RevModPhys.83.1057

    CrossRef Google Scholar

    [9]
    Moore J E 2010 Nature 464 194 doi: 10.1038/nature08916

    CrossRef Google Scholar

    [10]
    Fu L and Kane C L 2007 Phys. Rev. B 76 045302 doi: 10.1103/PhysRevB.76.045302

    CrossRef Google Scholar

    [11]
    Yang G, Liu J, Fu L, Duan W and Liu C 2014 Phys. Rev. B 89 085312 doi: 10.1103/PhysRevB.89.085312

    CrossRef Google Scholar

    [12]
    Fu L 2011 Phys. Rev. Lett. 106 106802 doi: 10.1103/PhysRevLett.106.106802

    CrossRef Google Scholar

    [13]
    Hsieh T H, Lin H, Liu J, Duan W, Bansil A and Fu L 2012 Nat. Commun. 3 982 doi: 10.1038/ncomms1969

    CrossRef Google Scholar

    [14]
    Tanaka Y et al. 2012 Nat. Phys. 8 800 doi: 10.1038/nphys2442

    CrossRef Google Scholar

    [15]
    Dziawa P et al. 2012 Nat. Mater. 11 1023 doi: 10.1038/nmat3449

    CrossRef Google Scholar

    [16]
    Liu J, Duan W and Fu L 2013 Phys. Rev. B 88 241303 doi: 10.1103/PhysRevB.88.241303

    CrossRef Google Scholar

    [17]
    Xu S Y et al. 2012 Nat. Commun. 3 1192 doi: 10.1038/ncomms2191

    CrossRef Google Scholar

    [18]
    Zeljkovic I et al. 2015 Nat. Nano 10 849 doi: 10.1038/nnano.2015.177

    CrossRef Google Scholar

    [19]
    Cao Y et al. 2013 Nat. Phys. 9 499 doi: 10.1038/nphys2685

    CrossRef Google Scholar

    [20]
    Zeljkovic I et al. 2014 Nat. Phys. 10 572 doi: 10.1038/nphys3012

    CrossRef Google Scholar

    [21]
    Luo J W and Zunger A 2010 Phys. Rev. Lett. 105 176805 doi: 10.1103/PhysRevLett.105.176805

    CrossRef Google Scholar

    [22]
    Tang E and Fu L 2014 Nat. Phys. 10 964 doi: 10.1038/nphys3109

    CrossRef Google Scholar

    [23]
    Okada Y et al. 2013 Science 341 1496 doi: 10.1126/science.1239451

    CrossRef Google Scholar

    [24]
    Zeljkovic I et al. 2015 Nat. Mater. 14 318 doi: 10.1038/nmat4215

    CrossRef Google Scholar

    [25]
    Tanaka Y et al. 2013 Phys. Rev. B 87 155105 doi: 10.1103/PhysRevB.87.155105

    CrossRef Google Scholar

    [26]
    Ye Z Y, Deng H X, Wu H Z, Li S S, Wei S H and Luo J W 2015 npj Comput. Mater. 1 15001 doi: 10.1038/npjcompumats.2015.1

    CrossRef Google Scholar

    [27]
    Yan C et al. 2014 Phys. Rev. Lett. 112 186801 doi: 10.1103/PhysRevLett.112.186801

    CrossRef Google Scholar

    [28]
    Mascarenhas A 2001 Spontaneous Ordering in Semiconductor Alloys New York: Plenum

    Google Scholar

    [29]
    Wei S H and Zunger A 1997 Phys. Rev. B 55 13605 doi: 10.1103/PhysRevB.55.13605

    CrossRef Google Scholar

    [30]
    Zunger A, Wei S H, Ferreira L G and Bernard J E 1990 Phys. Rev. Lett. 65 353 doi: 10.1103/PhysRevLett.65.353

    CrossRef Google Scholar

    [31]
    Kondow M, Kakibayashi H, Tanaka T and Minagawa S 1989 Phys. Rev. Lett. 63 884 doi: 10.1103/PhysRevLett.63.884

    CrossRef Google Scholar

    [32]
    Stringfellow G B and Chen G S 1991 J. Vac. Sci. Technol. B 9 2182 doi: 10.1116/1.585761

    CrossRef Google Scholar

    [33]
    Kurtz S R, Dawson L R, Biefeld R M, Follstaedt D M and Doyle B L 1992 Phys. Rev. B 46 1909 doi: 10.1103/PhysRevB.46.1909

    CrossRef Google Scholar

    [34]
    Jen H R, Ma K Y and Stringfellow G B 1989 Appl. Phys. Lett. 54 1154 doi: 10.1063/1.100746

    CrossRef Google Scholar

    [35]
    Kim T W et al. 2001 Appl. Phys. Lett. 78 922 doi: 10.1063/1.1345841

    CrossRef Google Scholar

    [36]
    Lee H S et al. 2002 J. Appl. Phys. 91 5657 doi: 10.1063/1.1459744

    CrossRef Google Scholar

    [37]
    Schröder T et al. 2011 Phys. Rev. B 84 184104 doi: 10.1103/PhysRevB.84.184104

    CrossRef Google Scholar

    [38]
    Wei S H, Franceschetti A and Zunger A 1995 Phys. Rev. B 51 13097 doi: 10.1103/PhysRevB.51.13097

    CrossRef Google Scholar

    [39]
    Slager R J, Mesaros A, Juricic V and Zaanen J 2013 Nat. Phys. 9 98 doi: 10.1038/nphys2513

    CrossRef Google Scholar

    [40]
    Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401 doi: 10.1103/PhysRevLett.102.226401

    CrossRef Google Scholar

    [41]
    Barone P, Sante D D and Picozzi S 2013 Phys. Status Solidi RRL 7 1102 doi: 10.1002/pssr.201308154

    CrossRef Google Scholar

    [42]
    Zhang J X et al. 2011 Nat. Nano 6 98 doi: 10.1038/nnano.2010.265

    CrossRef Google Scholar

    [43]
    Zhang J et al. 2015 Nat. Commun. 6 10067 doi: 10.1038/ncomms10067

    CrossRef Google Scholar

    [44]
    Soluyanov A A and Vanderbilt D 2011 Phys. Rev. B 83 235401 doi: 10.1103/PhysRevB.83.235401

    CrossRef Google Scholar

    [45]
    Wang Z et al. 2012 Phys. Rev. B 85 195320 doi: 10.1103/PhysRevB.85.195320

    CrossRef Google Scholar

    [46]
    Liu Z K et al. 2014 Science 343 864 doi: 10.1126/science.1245085

    CrossRef Google Scholar

    [47]
    Neupane M et al. 2014 Nat. Commun. 5 4786 doi: 10.1038/ncomms5786

    CrossRef Google Scholar

    [48]
    Weng H, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029 doi: 10.1103/PhysRevX.5.011029

    CrossRef Google Scholar

    [49]
    Xu S Y et al. 2015 Science 349 613 doi: 10.1126/science.aaa9297

    CrossRef Google Scholar

    [50]
    Tarasenko S A et al. 2015 Phys. Rev. B 91 081302 doi: 10.1103/PhysRevB.91.081302

    CrossRef Google Scholar

    [51]
    Zhang Y et al. 2010 Nat. Phys. 6 584 doi: 10.1038/nphys1689

    CrossRef Google Scholar

    [52]
    Förster T, Krüger P and Rohlfing M 2016 Phys. Rev. B 93 205442 doi: 10.1103/PhysRevB.93.205442

    CrossRef Google Scholar

  • Related Articles

    [1]Zijian Xiong, Yining Xu, Xue-Feng Zhang. Dynamics in the planar pyrochlore lattice: flat band, domain wall and anomaly [J]. Chin. Phys. Lett., 2025, 42(5): 057301. doi: 10.1088/0256-307X/42/5/057301
    [2]Yi Cui, Rong Yu, Weiqiang Yu. Deconfined Quantum Critical Point: A Review of Progress [J]. Chin. Phys. Lett., 2025, 42(4): 047503. doi: 10.1088/0256-307X/42/4/047503
    [3]Cuiying Pei, Yunyouyou Xia, Jiazhen Wu, Yi Zhao, Lingling Gao, Tianping Ying, Bo Gao, Nana Li, Wenge Yang, Dongzhou Zhang, Huiyang Gou, Yulin Chen, Hideo Hosono, Gang Li, Yanpeng Qi. Pressure-Induced Topological and Structural Phase Transitions in an Antiferromagnetic Topological Insulator [J]. Chin. Phys. Lett., 2020, 37(6): 066401. doi: 10.1088/0256-307X/37/6/066401
    [4]ZHANG Xiu-Ming, DUAN Yi-Shi. The Topological Structure of the SU(2) Chern-Simons Topological Current in the Four-Dimensional Quantum Hall Effect [J]. Chin. Phys. Lett., 2010, 27(7): 077301. doi: 10.1088/0256-307X/27/7/077301
    [5]YUE Song, DU Juan, ZHANG Yuan, ZHANG Yu-Heng. Metal-Insulator Transition in CuIr2(S1-xTex)4 [J]. Chin. Phys. Lett., 2009, 26(11): 117103. doi: 10.1088/0256-307X/26/11/117103
    [6]ZHU Rui. Superfluid-Mott-Insulator Phase Transition and Collective Fluctuations in both Phases of Bosons in an Optical Lattice [J]. Chin. Phys. Lett., 2007, 24(3): 797-799.
    [7]WANG Zhi-Ming, XING Ding-Yu, ZHANG Shi-Yuan, XU Qing-Yu, Margriet VanBael, DU You-Wei. Magnetic-Field-Induced Semimetal-Insulator-like Transition in Highly Oriented Pyrolitic Graphite [J]. Chin. Phys. Lett., 2007, 24(1): 199-202.
    [8]FANG Jin-Qing, LIANG Yong. Topological Properties and Transition Features Generated by a New Hybrid Preferential Model [J]. Chin. Phys. Lett., 2005, 22(10): 2719-2722.
    [9]LI Yun-De. Topological String in Quantum-Chromodynamical Chiral Phase Transitions [J]. Chin. Phys. Lett., 2005, 22(5): 1300-1302.
    [10]DING Jian-Wen, YAN Xiao-Hong, LIU Chao-Ping, TANG Na-Si. Strain Induced Insulator-Metal Transition in Single Wall Carbon Nanotubes [J]. Chin. Phys. Lett., 2004, 21(4): 704-706.
  • Other Related Supplements

Catalog

    Article views (1002) PDF downloads (902) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return