Influence of Change in Inner Layer Thickness of Composite Circular Tube on Second-Harmonic Generation by Primary Circumferential Ultrasonic Guided Wave Propagation

Funds: Supported by the National Natural Science Foundation of China under Grant Nos 11474361, 11474093 and 11274388.
  • Received Date: December 27, 2016
  • Published Date: May 31, 2017
  • The influence of change in inner layer thickness of a composite circular tube is investigated on second-harmonic generation (SHG) by primary circumferential ultrasonic guided wave (CUGW) propagation. Within a second-order perturbation approximation, the nonlinear effect of primary CUGW propagation is treated as a second-order perturbation to its linear response. It is found that change in inner layer thickness of the composite circular tube will influence the efficiency of SHG by primary CUGW propagation in several aspects. In particular, with change in inner layer thickness, the phase velocity matching condition that is originally satisfied for the primary and double-frequency CUGW mode pair selected may no longer be satisfied. This will remarkably influence the efficiency of SHG by primary CUGW propagation. Theoretical analyses and numerical results show that the effect of SHG by primary CUGW propagation is very sensitive to change in inner layer thickness, and it can be used to accurately monitor a minor change in inner layer thickness of the composite circular tube.
  • Article Text

  • [1]
    Wang H F, Han J T and Zhang H 2013 Appl. Mech. Mater. 278 487 doi: 10.4028/www.scientific.net/AMM.278-280.487

    CrossRef Google Scholar

    [2]
    Zeng D Z, Deng K H, Shi T H and Lin Y H 2014 J. Press. Vess. Tech. 136 061402 doi: 10.1115/1.4026976

    CrossRef Google Scholar

    [3]
    Serikov O 2005 Metallurgist 49 347 doi: 10.1007/s11015-006-0002-0

    CrossRef Google Scholar

    [4]
    Torbatia A M, Mirandab R M, Quintino L, Williams S and Yapp D 2011 J. Mater. Process. Tech. 211 1112 doi: 10.1016/j.jmatprotec.2011.01.013

    CrossRef Google Scholar

    [5]
    Chillara V K and Lissenden C J 2015 Opt. Eng. 55 011002 doi: 10.1117/1.OE.55.1.011002

    CrossRef Google Scholar

    [6]
    Deng M X 1996 Jpn. J. Appl. Phys. 35 4004 doi: 10.1143/JJAP.35.4004

    CrossRef Google Scholar

    [7]
    Deng M X 1999 J. Appl. Phys. 85 3051 doi: 10.1063/1.369642

    CrossRef Google Scholar

    [8]
    Deng M X 2003 J. Appl. Phys. 94 4152 doi: 10.1063/1.1601312

    CrossRef Google Scholar

    [9]
    Srivastava A and Scalea F L 2009 J. Sound Vib. 323 932 doi: 10.1016/j.jsv.2009.01.027

    CrossRef Google Scholar

    [10]
    Zhao J L, Chillara V K, Ren B Y, Cho H J, Qiu J H and Lissenden C J 2016 J. Appl. Phys. 119 064902 doi: 10.1063/1.4941390

    CrossRef Google Scholar

    [11]
    Deng M X, Xiang Y X and Liu L B 2011 J. Appl. Phys. 109 113525 doi: 10.1063/1.3592672

    CrossRef Google Scholar

    [12]
    Deng M X and Pei J F 2007 Appl. Phys. Lett. 90 121902 doi: 10.1063/1.2714333

    CrossRef Google Scholar

    [13]
    Xiang Y X, Deng M X, Xuan F Z and Liu C J 2011 Ultrasonics 51 974 doi: 10.1016/j.ultras.2011.05.013

    CrossRef Google Scholar

    [14]
    Rauter N and Lammering R 2015 Mech. Adv. Mater. Struc. 22 44 doi: 10.1080/15376494.2014.907950

    CrossRef Google Scholar

    [15]
    Valle C, Qu J M and Jacobs L J 1999 Int. J. Eng. Sci. 37 1369 doi: 10.1016/S0020-72259800133-5

    CrossRef Google Scholar

    [16]
    Qu J M, Berthelot Y and Li Z B 1996 Rev. Prog. Quan. Nondest. Eval. 15 169 doi: 10.1007/978-1-4613-0383-1_21

    CrossRef Google Scholar

    [17]
    Shivaraj K, Balasubramaniam K and Krishnamurthy C V 2008 J. Press. Vess. Tech. 130 021502 doi: 10.1115/1.2892031

    CrossRef Google Scholar

    [18]
    Luo W, Rose J L and Van Velsor1 J K 2006 Rev. Prog. Quan. Nondest. Eval. 25 165

    Google Scholar

    [19]
    Li J 2005 J. Press. Vess. Tech. 127 530 doi: 10.1115/1.2083867

    CrossRef Google Scholar

    [20]
    Gao G J, Deng M X and Li M L 2015 Acta Phys. Sin. 64 184303 in Chinese

    Google Scholar

    [21]
    Deng M X, Gao G J and Li M L 2015 Chin. Phys. Lett. 32 124305 doi: 10.1088/0256-307X/32/12/124305

    CrossRef Google Scholar

    [22]
    Deng M X, Gao G J, Xiang Y X and Li M L 2017 Ultrasonics 75 209 doi: 10.1016/j.ultras.2016.12.001

    CrossRef Google Scholar

    [23]
    Deng M X 2006 Ultrasonics 44 e1157 doi: 10.1016/j.ultras.2006.05.158

    CrossRef Google Scholar

    [24]
    Li M L, Deng M X and Gao G J 2016 Acta Phys. Sin. 65 194301 in Chinese

    Google Scholar

    [25]
    Gao G J, Deng M X, Li M L and Liu C 2015 Acta Phys. Sin. 64 224301 in Chinese

    Google Scholar

    [26]
    Wang Y J 2004 Acta Acust. 29 97 in Chinese

    Google Scholar

    [27]
    Rose J L 1999 Ultrasonic Waves in Solid Media UK: Cambridge University Press

    Google Scholar

    [28]
    de Lima W J N and Hamilton M F 2003 J. Sound Vib. 265 819 doi: 10.1016/S0022-460X0201260-9

    CrossRef Google Scholar

    [29]
    Hearmon R F S and Landolt- Börnstein 1979 Numerical Data and Functional Relationship in Science and Technology Group III Berlin: Springer

    Google Scholar

    [30]
    Pruell C, Kim J Y, Qu J M and Jacobs L J 2009 Smart Mater. Struct. 18 035003 doi: 10.1088/0964-1726/18/3/035003

    CrossRef Google Scholar

    [31]
    Nagy P B 1998 Ultrasonics 36 375 doi: 10.1016/S0041-624X9700040-1

    CrossRef Google Scholar

    [32]
    Herrmann J, Kim J Y, Jacobs L J, Qu J M, Littles J W and Savage M F 2006 J. Appl. Phys. 99 124913 doi: 10.1063/1.2204807

    CrossRef Google Scholar

Catalog

    Article views (2) PDF downloads (556) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return