[1] | Shelby R A, Smith D R and Schultz S 2001 Science 292 77 | Experimental Verification of a Negative Index of Refraction
[2] | Veselago V G and Lebedev P N 1968 Sov. Phys. Usp. 10 509 | THE ELECTRODYNAMICS OF SUBSTANCES WITH SIMULTANEOUSLY NEGATIVE VALUES OF $\epsilon$ AND μ
[3] | Smith D R, Padilla W J, Vier D C et al 2000 Phys. Rev. Lett. 84 4184 | Composite Medium with Simultaneously Negative Permeability and Permittivity
[4] | Zhang H, Cao X Y, Gao J et al 2014 PIER Lett. 44 35 | A NOVEL DUAL-BAND METAMATERIAL ABSORBER AND ITS APPLICATION FOR MICROSTRIP ANTENNA
[5] | Iwaszczuk K, Strikwerda A C, Fan K et al 2012 Opt. Express 20 635 | Flexible metamaterial absorbers for stealth applications at terahertz frequencies
[6] | Wang H, Siva P V, Mitchell A et al 2015 Sol. Energy Mater. Sol. Cells 137 235 | Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting
[7] | He Z H, Peng Y Y, Li B X et al 2016 Appl. Phys. Express 9 072002 | Aspect ratio control and sensing applications for a slot waveguide with a multimode stub
[8] | He Z H, Li H J, Li B X et al 2016 Opt. Lett. 41 5206 | Theoretical analysis of ultrahigh figure of merit sensing in plasmonic waveguides with a multimode stub
[9] | Li B X, Li H J, Zeng L L et al 2016 J. Lightwave Technol. 34 3342 | Sensing Application in Fano Resonance With T-Shape Structure
[10] | Zhan S P, Li H J, He Z H et al 2015 Opt. Express 23 20313 | Sensing analysis based on plasmon induced transparency in nanocavity-coupled waveguide
[11] | Chen Z Q, Li H J, Li B X et al 2016 Appl. Phys. Express 9 102002 | Tunable ultra-wide band-stop filter based on single-stub plasmonic-waveguide system
[12] | Landy N I, Sajuyigbe S, Mock J J et al 2008 Phys. Rev. Lett. 100 107402 | Phonon-Driven Ultrafast Exciton Dissociation at Donor-Acceptor Polymer Heterojunctions
[13] | Bhattacharyya S, Ghosh S, Chaurasiya D et al 2015 Appl. Phys. A 118 207 | Bandwidth-enhanced dual-band dual-layer polarization-independent ultra-thin metamaterial absorber
[14] | Gao R, Zong C X, Ding C et al 2015 Opt. Commun. 356 400 | Graphene metamaterial for multiband and broadband terahertz absorber
[15] | Feng R, Qiu J, Cao Y et al 2014 Appl. Phys. Lett. 105 181102 | Omnidirectional and polarization insensitive nearly perfect absorber in one dimensional meta-structure
[16] | Wu J, Zhou C, Yu J et al 2014 IEEE Photon. Technol. Lett. 26 949 | Polarization-Independent Absorber Based on a Cascaded Metal–Dielectric Grating Structure
[17] | Shen Y, Pei Z B, Pang Y Q et al 2015 J. Appl. Phys. 117 224503 | An extremely wideband and lightweight metamaterial absorber
[18] | Cheng Y Z, Wang Y, Nie Y et al 2012 J. Appl. Phys. 111 044902 | Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements
[19] | Zhang H B, Deng L W, Zhou P H et al 2013 J. Appl. Phys. 113 013903 | Low frequency needlepoint-shape metamaterial absorber based on magnetic medium
[20] | Han N R, Chen Z C, Lim C S et al 2011 Opt. Express 19 6990 | Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates
[21] | Bai Y, Zhao L, Ju D Q et al 2015 Opt. Express 23 8670 | Wide-angle, polarization-independent and dual-band infrared perfect absorber based on L-shaped metamaterial
[22] | Boriskina S V, Ghasemi H and Chen G 2013 Mater. Today 16 375 | Plasmonic materials for energy: From physics to applications
[23] | Patrick R and Cumali S 2016 J. Alloys Compd. 671 43 | Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications
[24] | Huang H L, Xia H, Guo Z B et al 2017 Chin. Phys. B 26 025207 | Microwave absorption properties of Ag naowires/carbon black composites
[25] | Smith D R, Vier D C, Koschny T H et al 2005 Phys. Rev. E 71 036617 | Electromagnetic parameter retrieval from inhomogeneous metamaterials
[26] | Chen J F, Huang X T, Zerihun G et al 2015 J. Electron. Mater. 44 4269 | Polarization-Independent, Thin, Broadband Metamaterial Absorber Using Double-Circle Rings Loaded with Lumped Resistances
[27] | Lyoyd H J 2012 Appl. Phys. Lett. 100 122103 | Generalized conductivity model for polar semiconductors at terahertz frequencies