[1] | Chow D H, Miles R H, Soderstrom J R et al 1990 Appl. Phys. Lett. 56 1418 | Growth and characterization of InAs/Ga1−xInxSb strained-layer superlattices
[2] | Chang C P, Chen J, Fernandez J M et al 1992 Appl. Phys. Lett. 60 1129 | Strain relaxation of compositionally graded InxGa1−xAs buffer layers for modulation-doped In0.3Ga0.7As/In0.29Al0.71As heterostructures
[3] | Watkins S P, Ares R, Soerensen G et al 1997 J. Cryst. Growth 170 788 | Atomic force microscopy study of morphology and dislocation structure of InAs and GaSb grown on highly mismatched substrates
[4] | Zhang X B, Ryou J H, Dupuis R D et al 2006 Appl. Phys. Lett. 88 072104 | Metalorganic chemical vapor deposition growth of high-quality InAs∕GaSb type II superlattices on (001) GaAs substrates
[5] | Mohseni H, Tahraoui A, Wojkowski J S, Razeghi M, Mitchel W and Saxler A 2000 Proc. SPIE 3948 145 | SPIE Proceedings
[6] | Morosini M B, Gerrera-Perez J L, Loural M S et al 1993 IEEE J. Quantum Electron. 29 2103 | Low-threshold GaInAsSb/GaAlAsSb double-heterostructure lasers grown by LPE
[7] | Staveteig P T, Choi Y H, Labeyrie G et al 1994 Appl. Phys. Lett. 64 460 | Photoconductance measurements on InTlSb/InSb/GaAs grown by low-pressure metalorganic chemical vapor deposition
[8] | Brar B and Leonard D 1995 Appl. Phys. Lett. 66 463 | Spiral growth of GaSb on (001) GaAs using molecular beam epitaxy
[9] | Brown S J, Grimshaw M P, Ritchie D A et al 1996 Appl. Phys. Lett. 69 1468 | Variation of surface morphology with substrate temperature for molecular beam epitaxially grown GaSb(100) on GaAs(100)
[10] | Akahane K, Yamamoto N, Gozu S et al 2004 J. Cryst. Growth 264 21 | Heteroepitaxial growth of GaSb on Si(001) substrates
[11] | Muller K L, Heitz R, Schliwa Aa et al 2001 Appl. Phys. Lett. 78 1418 | Many-particle effects in type II quantum dots
[12] | Muller K L, Heitz R and Pohl U W 2001 Appl. Phys. Lett. 79 1027 | Temporal evolution of GaSb/GaAs quantum dot formation
[13] | Chang J C P, Chen J, Fernandez J M, Wieder H H and Kavanagh K L 1992 Appl. Phys. Lett. 60 1129 | Strain relaxation of compositionally graded InxGa1−xAs buffer layers for modulation-doped In0.3Ga0.7As/In0.29Al0.71As heterostructures
[14] | Jayavel P, Nakamura S, Koyama T and Hayakawa Y 2006 Phys. Status Solidi C 3 2685 | Effects of buffer layer on the structural and electrical properties of InAsSb epilayers grown on GaAs (001)
[15] | Xin Y C, Vaughn L G, Dawson L R, Stintz A, Lin Y, Lester L F and Huffaker D L 2003 J. Appl. Phys. 94 2133 | InAs quantum-dot GaAs-based lasers grown on AlGaAsSb metamorphic buffers
[16] | Qian W, Skowronski M and Kaspi R 1997 J. Electrochem. Soc. 144 1430 | Dislocation Density Reduction in GaSb Films Grown on GaAs Substrates by Molecular Beam Epitaxy
[17] | Chow D H, Miles R H, Soderstrom J R and McGill T C 1990 Appl. Phys. Lett. 56 1418 | Growth and characterization of InAs/Ga1−xInxSb strained-layer superlattices
[18] | Zhang X B, Ryou J H, Dupuis R D, Petschke A, Mou S, Chuang S L, Xu C and Hsieh K C 2006 Appl. Phys. Lett. 88 072104 | Metalorganic chemical vapor deposition growth of high-quality InAs∕GaSb type II superlattices on (001) GaAs substrates
[19] | Lee W, Kim S, Choi S, Lee H, Lee S, Park S, Yao T, Song J, Ko H and Chang J 2007 J. Cryst. Growth 305 40 | Molecular beam epitaxy of GaSb layers on GaAs (001) substrates by using three-step ZnTe buffer layers
[20] | Kanisawa K, Yamaguchi H and Hirayama Y 2000 Appl. Phys. Lett. 76 589 | Two-dimensional growth of InSb thin films on GaAs(111)A substrates
[21] | Nishimura T, Kadoiwa K, Hayafuji N, Miyashita M, Mitsui K, Kumabe H and Murotani T 1991 J. Cryst. Growth 107 468 | Surface morphology improvement of GaAs-on-Si using a two-reactor MOCVD system and an AlAs/GaAs low temperature buffer layer: an approach to crack-free GaAs-on-Si
[22] | Takano Y, Sasaki T, Nagaki Y, Kuwahara K et al 1996 J. Cryst. Growth 169 621 | Two-step growth of InP on GaAs substrates by metalorganic vapor phase epitaxy
[23] | Wen L, Gao F L, Zhang X N, Zhang S G et al 2014 J. Appl. Phys. 116 193508 | Effect of InGaAs interlayer on the properties of GaAs grown on Si (111) substrate by molecular beam epitaxy
[24] | Gao F L, Wen L, Zhang S G, Li J L, Zhang X N et al 2015 Thin Solid Films 597 25 | Effect of InxGa1−xAs interlayer on the properties of In0.3Ga0.7As epitaxial films grown on Si (111) substrates by molecular beam epitaxy
[25] | Zhou Z Q, Xu Y Q, Hao R T, Tang B, Ren Z W and Niu Z C 2009 Chin. Phys. Lett. 26 018101 | Molecular Beam Epitaxy of GaSb on GaAs Substrates with AlSb Buffer Layers
[26] | Sun Q L, Wang L, Wang W Q, Sun L, Li M C, Wang W X et al 2015 Chin. Phys. Lett. 32 106801 | Growth and Characterization of InAs 1– x Sb x with Different Sb Compositions on GaAs Substrates
[27] | Watkins S P, Ares R, Soerensen G, Zhong W, Tran C A et al 1997 J. Cryst. Growth 170 788 | Atomic force microscopy study of morphology and dislocation structure of InAs and GaSb grown on highly mismatched substrates
[28] | Kim H S, Noh Y K, Kim M D, Kwon Y J, Oh J E et al 2007 J. Cryst. Growth 301 230 | Dependence of the AlSb buffers on GaSb/GaAs(001) heterostructures