Chin. Phys. Lett.  2021, Vol. 38 Issue (11): 113401    DOI: 10.1088/0256-307X/38/11/113401
ATOMIC AND MOLECULAR PHYSICS |
Ab Initio Study of Single- and Double-Electron Capture Processes in Collisions of He$^{2+}$ Ions and Ne Atoms
Xiao-Xia Wang1, Kun Wang2, Yi-Geng Peng3, Chun-Hua Liu4, Ling Liu5, Yong Wu5, Heinz-Peter Liebermann6, Robert J. Buenker6, and Yi-Zhi Qu1*
1College of Material Sciences and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
2Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
3Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
4School of Physics, Southeast University, Nanjing 210094, China
5Data Center for High Energy Density Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
6Fachbereich C-Mathematik und Naturwissenschaften, Bergische Universitat Wuppertal, D-42097 Wuppertal, Germany
Cite this article:   
Xiao-Xia Wang, Kun Wang, Yi-Geng Peng et al  2021 Chin. Phys. Lett. 38 113401
Download: PDF(688KB)   PDF(mobile)(805KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The single- and double-electron capture (SEC, DEC) processes of He$^{2+}$ ions colliding with Ne atoms are studied by utilizing the full quantum-mechanical molecular-orbital close-coupling method. Total and state-selective SEC and DEC cross sections are presented in the energy region of 2 eV/u to 20 keV/u. Results show that the dominant reaction channel is Ne$^{+}$(2$s2p^{6}$ $^{2}\!S$) + He$^{+}$(1$s$) in the considered energy region due to strong couplings with the initial state Ne(2$s^{2}2p^{6}$ $^{1}\!S$) + He$^{2+}$ around the internuclear distance of 4.6 a.u. In our calculations, the SEC cross sections decrease initially and then increase whereby, the minimum point is around 0.38 keV/u with the increase of collision energies. After considering the effects of the electron translation factor (ETF), the SEC cross sections are increased by 15%–25% nearby the energy region of keV/u and agree better with the available results. The DEC cross sections are smaller than those of SEC because of the larger energy gaps and no strong couplings with the initial state. Due to the Demkov-type couplings between DEC channel Ne$^{2+}$(2s$^{2}2p^{4}$ $^{1}\!S$) + He(1$s^{2}$) and the dominating SEC channel Ne$^{+}$(2$s2p^{6}$ $^{2}\!S$) + He$^{+}$(1$s$), the DEC cross sections increase with increasing impact energies. Good consistency can also be found between the present DEC and the experimental measurements in the overlapping energy region.
Received: 02 August 2021      Published: 27 October 2021
PACS:  34.70.+e (Charge transfer)  
  34.20.-b (Interatomic and intermolecular potentials and forces, potential energy surfaces for collisions)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11774344 and 11474033), and the National Key Research and Development Program of China (Grant No. 2017YFA0402300).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/11/113401       OR      https://cpl.iphy.ac.cn/Y2021/V38/I11/113401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiao-Xia Wang
Kun Wang
Yi-Geng Peng
Chun-Hua Liu
Ling Liu
Yong Wu
Heinz-Peter Liebermann
Robert J. Buenker
and Yi-Zhi Qu
[1] Gao Y, Zhu X L, Zhang S F, Zhang R T, Feng W T, Guo D L, Li B, Zhao D M, Wang H B, Huang Z K, Yan S C, Qian D B, and Ma X W 2016 Chin. Phys. Lett. 33 073401
[2] Otranto S, Olson R E, and Beiersdorfer P 2007 J. Phys. B 40 1755
[3] Bhardwaj A, Elsner R F, Randall G G, Cravens T E, Lisse C M, Dennerl K, Branduardi-Raymont G, Wargelin B J, Hunter W J, Robertson I, Østgaard N, Beiersdorfer P, Snowden S L, and Kharchenko V 2007 Planet. Space Sci. 55 1135
[4] Cravens T E 1997 Geophys. Res. Lett. 24 105
[5] Bochsler P 1987 Phys. Scr. T18 55
[6]Shelley E G, Fuselier S A, Balsiger H, Drake J F, Geiss J, Goldstein B E, Goldstein R, Ip W H, Lazarus A J, and Neugebauer M 1987 Astron. Astrophys. 187 304
[7] Owen T, Bar-Nun A, and Kleinfeld I 1992 Nature 358 43
[8] Rudd M E, Goffe T V, and Itoh A 1985 Phys. Rev. A 32 2128
[9] DuBois R D 1986 Phys. Rev. A 33 1595
[10] DuBois R D 1987 Phys. Rev. A 36 2585
[11] Baragiola R A, Nemirovsky I B, and M 1973 Nucl. Instrum. Methods 110 511
[12]Afrosimov V V, Basalaev A A, Leiko G A, and Panov M N 1979 Electronic and Atomic Collisions (XI-th ICPEAC Abstracts of Contributed Papers) 29 August–4 September, 1979, Kyoto p 580
[13] Hanaki H, Toshio K, Nobuo N, and Masakatsu S 1983 J. Phys. Soc. Jpn. 52 424
[14]Abdelrahman M M, Figuera D S S, Aumayr F, and Winter H 2007 6th Conference on Nuclear and Particle Physics 17–21 November 2007, Luxor, pp 617–627
[15] Silva S F, Kowarik G, Aumayr F, and Winter H 2007 J. Phys.: Conf. Ser. 58 181
[16]Afrosimov V V, Barash D F, Basalaev A A, Gushchina N A, Lozhkin K O, Nikulin V K, Panov M N, and Stepanov I Y 1993 J. Exp. Theor. Phys. 77 554
[17] Kirchner T, Gulyás L, Lüdde H J, Engel E, and Dreizler R M 1998 Phys. Rev. A 58 2063
[18] Kirchner T, Horbatsch M, Lüdde H J, and Dreizler R M 2000 Phys. Rev. A 62 042704
[19] Hong X, Wang F, Jiao Y, Su W, Wang J, and Gou B 2013 J. Chem. Phys. 139 084321
[20]Bransden B H and McDowell M R C 1992 Charge Exchange and the Theory of Ion-Atom Collision (Oxford: Clarendon Press) p 300
[21] Zygelman B, Cooper D L, Ford M J, Dalgarno A, Gerratt J, and Raimondi M 1992 Phys. Rev. A 46 3846
[22] Heil T G, Butler S E, and Dalgarno A 1981 Phys. Rev. A 23 1100
[23] Wang K, Wang X X, Qu Y Z, Liu C H, Liu L, Wu Y, and Buenker R J 2020 Chin. Phys. Lett. 37 023401
[24] Liu C H, Wang J G, and Janev R K 2012 J. Phys. B 45 235203
[25] Zhao L B, Watanabe A, Stancil P C, and Kimura M 2007 Phys. Rev. A 76 022701
[26] Wang K, Qu Y Z, Liu C H, Liu L, Wu Y, Liebermann H P, and Buenker R J 2019 J. Phys. B 52 075202
[27] Liu C H, Wang J G, and Janev R K 2014 Phys. Rev. A 89 062719
[28] Krebs S and Buenker R J 1995 J. Chem. Phys. 103 5613
[29] Buenker R J and Phillips R A 1985 J. Mol. Struct.: THEOCHEM 123 291
[30] Austin T M, Mullen J M, and Bailey T L 1975 Chem. Phys. 10 117
[31] Kimura M and Lane N F 1989 Adv. At. Mol. Opt. Phys. 26 79
[32] Johnson B R 1973 J. Comput. Phys. 13 445
[33] Gargaud M, Mccarroll R, and Valiron P 1987 J. Phys. B 20 1555
[34] Errea L F, Mendez L, and Riera A 1982 J. Phys. B 15 101
[35] Bacchus-Montabonel M C and Ceyzeriat P 1998 Phys. Rev. A 58 1162
[36] Fernandez P L and Christiansen P A 1985 J. Chem. Phys. 82 2664
[37] Dunning T H 1989 J. Chem. Phys. 90 1007
[38] Römelt J, Peyerimhoff S D, and Buenker R J 1978 Chem. Phys. 34 403
[39]Kramida A, Ralchenko Yu, Reader J, and NIST ASD Team 2019 NIST Atomic Spectra Database (National Institute of Standards and Technology, Gaithersburg, MD)
[40] Kimura M and Lane N F 1990 Phys. Rev. A 41 5938
[41] Liu C H, Liu L, Qu Y Z, Wang J G, and Janev R K 2010 Phys. Rev. A 82 022710
[42] Liu L, Li X Y, Wang J G, and Janev R K 2014 Phys. Plasmas 21 062513
[43] Fritsch W and Lin C D 1991 Phys. Rep. 202 1
Viewed
Full text


Abstract