Chin. Phys. Lett.  2020, Vol. 37 Issue (8): 084201    DOI: 10.1088/0256-307X/37/8/084201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Electro-Optically Switchable Optical True Delay Lines of Meter-Scale Lengths Fabricated on Lithium Niobate on Insulator Using Photolithography Assisted Chemo-Mechanical Etching
Jun-xia Zhou1,2, Ren-hong Gao3,4, Jintian Lin3,5*, Min Wang1,2, Wei Chu1,2, Wen-bo Li3,4, Di-feng Yin3,4, Li Deng1,2, Zhi-wei Fang1,2, Jian-hao Zhang3,4, Rong-bo Wu3,4and Ya Cheng1,2,3,4,5,6,7*
1State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
2XXL—The Extreme Optoelectromechanics Laboratory, School of Physics and Electronics Science, East China Normal University, Shanghai 200241, China
3State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
4University of Chinese Academy of Sciences, Beijing 100049, China
5Collaborate CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
6Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
7Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
Cite this article:   
Jun-xia Zhou, Ren-hong Gao, Jintian Lin et al  2020 Chin. Phys. Lett. 37 084201
Download: PDF(1221KB)   PDF(mobile)(1224KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Optical true delay lines (OTDLs) of low propagation losses, small footprints and high tuning speeds and efficiencies are of critical importance for various photonic applications. Here, we report fabrication of electro-optically switchable OTDLs on lithium niobate on insulator using photolithography assisted chemo-mechanical etching. Our device consists of several low-loss optical waveguides of different lengths which are consecutively connected by electro-optical switches to generate different amounts of time delay. The fabricated OTLDs show an ultra-low propagation loss of $\sim 0.03$ dB/cm for waveguide lengths well above 100 cm.
Received: 28 June 2020      Published: 09 July 2020
PACS:  42.82.-m (Integrated optics)  
  42.79.-e (Optical elements, devices, and systems)  
Fund: Supported by the National Key R&D Program of China (Grant No. 2019YFA0705000), the National Natural Science Foundation of China (Grant Nos. 11734009, 61590934, and 11874375), the Strategic Priority Research Program of CAS (Grant No. XDB16030300), and the Key Project of the Shanghai Science and Technology Committee (Grant No. 17JC1400400).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/8/084201       OR      https://cpl.iphy.ac.cn/Y2020/V37/I8/084201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jun-xia Zhou
Ren-hong Gao
Jintian Lin
Min Wang
Wei Chu
Wen-bo Li
Di-feng Yin
Li Deng
Zhi-wei Fang
Jian-hao Zhang
Rong-bo Wuand Ya Cheng
[1] Gauthier D 2005 Phys. World 18 30
[2] Perez D, Gasulla I, Crudgington L, Thomson D J, Khokhar A Z, Li K, Cao W, Mashanovich G Z and Capmany J 2017 Nat. Commun. 8 636
[3] Yu L J, Wang H Q, Li H, Wang Z, Huang Y D, You L X and Zhang W 2019 Chin. Phys. Lett. 36 084202
[4] Cui X, Zhang C, Liang S, Zhu H L and Hou L P 2014 Chin. Phys. Lett. 31 044204
[5] Zhao P C, Qi F, Qi A Y, Wang Y F and Zheng W H 2017 Chin. Phys. Lett. 34 024202
[6] Ding Y X, Wang L L and Yu L 2018 Chin. Phys. Lett. 35 014201
[7] Lin J T, Zhou J X, Wu R B, Wang M, Fang Z W, Chu W, Zhang J H, Qiao L L and Cheng Y 2019 Micromachines 10 612
[8] Luo R, He Y, Liang H X, Li M X and Lin Q 2018 Optica 5 1006
[9] Elkus B S, Abdelsalam K, Rao A, Velev V, Fathpour S, Kumar P and Kanter G S 2019 Opt. Express 27 38521
[10] Geiss R, Saravi S, Sergeyev A, Diziain S, Setzpfandt F, Schrempel F, Grange R, Kley E B, Tunnermann A and Pertsch T 2015 Opt. Lett. 40 2715
[11] Siew S Y, Cheung E J H, Liang H D, Bettiol A, Toyoda N, Alshehri B, Dogheche E and Danner A J 2018 Opt. Express 26 4421
[12] Volk M F, Suntsov S, Ruter C E and Kip D 2016 Opt. Express 24 1386
[13] Niu Y, Lin C, Liu X, Chen Y, Hu X, Zhang Y, Cai X, Gong Y X, Xie Z and Zhu S 2020 Appl. Phys. Lett. 116 101104
[14] Zhang M, Wang C, Cheng R, Shams-Ansari A and Lončar M 2017 Optica 4 1536
[15] Zhang J H, Fang Z W, Lin J T, Zhou J X, Wang M, Wu R B, Gao R H and Cheng Y 2019 Nanomaterials 9 1218
[16] Fang Z W, Luo H P, Lin J T, Wang M, Zhang J H, Wu R B, Zhou J X, Chu W, Lu T and Cheng Y 2019 Opt. Lett. 44 5953
[17] Lin J T, Yao N, Hao Z Z, Zhang J H, Mao W B, Wang M, Chu W, Wu R B, Fang Z W, Qiao L L, Fang W, Bo F and Cheng Y 2019 Phys. Rev. Lett. 122 173903
[18] Hao Z Z, Wang J, Ma S Q, Mao W B, Bo F, Gao F, Zhang G Q and Xu J J 2017 Photon. Res. 5 623
[19] Wang L, Wang C, Wang J, Bo F, Zhang M, Gong Q H, Loncar M and Xiao Y F 2018 Opt. Lett. 43 2917
[20] He Y, Yang Q F, Ling J, Luo R, Liang H, Li M, Shen B, Wang H, Vahala K and Lin Q 2019 Optica 6 1138
[21] Zheng Y, Fang Z, Liu S, Cheng Y and Chen X 2019 Phys. Rev. Lett. 122 253902
[22] Wolf R, Jia Y, Bonaus S, Werner C S, Herr S J, Breunig I, Buse K and Zappe H 2018 Optica 5 872
[23] Lu J, Surya J B, Liu X, Bruch A W, Gong Z, Xu Y and Tang H X 2019 Optica 6 1455
[24] Lin J, Xu Y, Fang Z, Wang M, Song J, Wang N, Qiao L, Fang W and Cheng Y 2015 Sci. Rep. 5 8072
[25] Wu R B, Lin J T, Wang M, Fang Z W, Chu W, Zhang J H, Zhou J X and Cheng Y 2019 Opt. Lett. 44 4698
[26] Rao A, Patil A, Rabiei P, Honardoost A, Desalvo R, Paolella A and Fathpour S 2016 Opt. Lett. 41 5700
[27] Jin M, Chen J Y, Sua Y M and Huang Y P 2019 Opt. Lett. 44 1265
[28] Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P and Lončar M 2018 Nature 562 101
[29] He M, Xu M, Ren Y, Jian J, Ruan Z, Xu Y, Gao S, Sun S, Wen X, Zhou L, Liu L, Guo C, Chen H, Yu S, Liu L and Cai X 2019 Nat. Photon. 13 359
[30] Liang H X, Luo R, He Y, Jiang H W and Lin Q 2017 Optica 4 1251
[31] Diziain S, Geiss R, Zilk M, Schrempel F, Kley E B, Tunnermann A and Pertsch T 2013 Appl. Phys. Lett. 103 251101
[32] Xu H, Dai D, Liu L and Shi Y 2020 Opt. Express 28 10899
[33] Ding T, Zheng Y and Chen X 2019 J. Lightwave Technol. 37 1296
[34] Wu R, Wang M, Xu J, Qi J, Chu W, Fang Z, Zhang J, Zhou J, Qiao L, Chai Z, Lin J and Cheng Y 2018 Nanomaterials 8 910
[35] Wang M, Wu R, Lin J, Zhang J, Fang Z, Chai Z and Cheng Y 2019 Quantum Eng. 1 e9
Related articles from Frontiers Journals
[1] Rui-Kai Pan, Lei Tang, Keyu Xia, and Franco Nori. Dynamic Nonreciprocity with a Kerr Nonlinear Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 084201
[2] Lei Geng, Hao Liang, and Liang-You Peng. Laser-Induced Electron Fresnel Diffraction in Tunneling and Over-Barrier Ionization[J]. Chin. Phys. Lett., 2022, 39(4): 084201
[3] Xiaopeng Zhou, Xinning Zeng, Xuyang Ning, Abdusalam Abdukerim, Wei Chen, Xun Chen, Yunhua Chen, Chen Cheng, Xiangyi Cui, Yingjie Fan, Deqing Fang, Changbo Fu, Mengting Fu, Lisheng Geng, Karl Giboni, Linhui Gu, Xuyuan Guo, Ke Han, Changda He, Di Huang, Yan Huang, Yanlin Huang, Zhou Huang, Xiangdong Ji, Yonglin Ju, Shuaijie Li, Huaxuan Liu, Jianglai Liu, Xiaoying Lu, Wenbo Ma, Yugang Ma, Yajun Mao, Yue Meng, Kaixiang Ni, Jinhua Ning, Xiangxiang Ren, Changsong Shang, Guofang Shen, Lin Si, Andi Tan, Anqing Wang, Hongwei Wang, Meng Wang, Qiuhong Wang, Siguang Wang, Wei Wang, Xiuli Wang, Zhou Wang, Mengmeng Wu, Shiyong Wu, Weihao Wu, Jingkai Xia, Mengjiao Xiao, Pengwei Xie, Binbin Yan, Jijun Yang, Yong Yang, Chunxu Yu, Jumin Yuan, Ying Yuan, Dan Zhang, Tao Zhang, Li Zhao, Qibin Zheng, Jifang Zhou, and Ning Zhou (PandaX-II Collaboration). Erratum: A Search for Solar Axions and Anomalous Neutrino Magnetic Moment with the Complete PandaX-II Data [CHIN. PHYS. LETT. 38 (2021) 011301][J]. Chin. Phys. Lett., 2021, 38(10): 084201
[4] Shining Zhu. Meter-Level Optical Delay Line on a Low-Loss Lithium Niobate Nanophotonics Chip[J]. Chin. Phys. Lett., 2020, 37(8): 084201
[5] Zhenyu Fang , Haofei Xu , Yaqin Zheng , Yuelin Chen , and Zhang-Kai Zhou. Multiplexed Metasurfaces for High-Capacity Printing Imaging[J]. Chin. Phys. Lett., 2020, 37(7): 084201
[6] Lingjie Yu, Heqing Wang, Hao Li, Zhen Wang, Yidong Huang, Lixing You, Wei Zhang. A Silicon Shallow-Ridge Waveguide Integrated Superconducting Nanowire Single Photon Detector Towards Quantum Photonic Circuits[J]. Chin. Phys. Lett., 2019, 36(8): 084201
[7] Yin-Xing Ding, Lu-Lu Wang, Li Yu. Babinet-Inverted Optical Nanoantenna Analogue of Electromagnetically Induced Transparency[J]. Chin. Phys. Lett., 2018, 35(1): 084201
[8] Yin-Xing Ding, Lu-Lu Wang, Li Yu. Leaky Modes in Ag Nanowire over Substrate Configuration[J]. Chin. Phys. Lett., 2017, 34(9): 084201
[9] Chuan-Pu Liu, Xin-Li Zhu, Jia-Sen Zhang, Jun Xu, Yamin Leprince-Wang, Da-Peng Yu. Energy Levels of Coupled Plasmonic Cavities[J]. Chin. Phys. Lett., 2016, 33(08): 084201
[10] A. A. Latiff, A. Dhar, S. W. Harun, I. M. Babar, S. Das, M. C. Paul, H. Ahmad. Dual-Wavelength Holmium-Doped Fiber Laser Pumped by Thulium–Ytterbium Co-Doped Fiber Laser[J]. Chin. Phys. Lett., 2016, 33(05): 084201
[11] Ismael Chiamenti, Francesca Bonfigli, Anderson S. L. Gomes, Rosa Maria Montereali, Larissa N. da Costa, Hypolito J. Kalinowski. Broadband Optical Active Waveguides Written by Femtosecond Laser Pulses in Lithium Fluoride[J]. Chin. Phys. Lett., 2014, 31(1): 084201
[12] LIN Xu-Sheng, LIU Jing-Lin, ZHENG Yun-Bao, LAN Sheng. Modulation of Junction Defects Created by Crossing Photonic Crystal Waveguides[J]. Chin. Phys. Lett., 2014, 31(1): 084201
[13] JIN Yi-Chang, XU Chao, QIU Hui-Ye, XIANG Le-Qiang, YANG Jian-Yi, JIANG Xiao-Qing. Nonreciprocal Magneto-Plasmonic Waveguide with Compact Metal-Sandwiched Structure[J]. Chin. Phys. Lett., 2013, 30(9): 084201
[14] SHEN Ao, QIU Chen, HU Ting, XU Chao, JIANG Xiao-Qing, LI Yu-Bo, YANG Jian-Yi. An Eight-Channel 400 GHz-Spacing Etched Diffraction Grating Multi/Demultiplexer on a Nanophotonic Silicon-on-Insulator Platform[J]. Chin. Phys. Lett., 2013, 30(8): 084201
[15] QIU Chen, HU Ting, WANG Wan-Jun, YU Ping, JIANG Xiao-Qing, YANG Jian-Yi. Channel-Selectable Optical Link Based on a Silicon Microring for on-Chip Interconnection[J]. Chin. Phys. Lett., 2012, 29(9): 084201
Viewed
Full text


Abstract