Chin. Phys. Lett.  2020, Vol. 37 Issue (6): 066803    DOI: 10.1088/0256-307X/37/6/066803
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Water-Mediated Spontaneously Dynamic Oxygen Migration on Graphene Oxide with Structural Adaptivity for Biomolecule Adsorption
Yusong Tu1,2**, Liang Zhao1, Jiajia Sun1, Yuanyan Wu1, Xiaojie Zhou3, Liang Chen4, Xiaoling Lei5,6, Haiping Fang5,6, Guosheng Shi7**
1College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
2Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Optoelectronics, East China Normal University, Shanghai 200062, China
3National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
4Department of Optical Engineering, Zhejiang A&F University, Lin'an 311300, China
5Department of Physics, East China University of Science and Technology, Shanghai 200237, China
6Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
7Shanghai Applied Radiation Institute, Shanghai University, Shanghai 200444, China
Cite this article:   
Yusong Tu, Liang Zhao, Jiajia Sun et al  2020 Chin. Phys. Lett. 37 066803
Download: PDF(4566KB)   PDF(mobile)(5924KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We theoretically and experimentally show that, with water being adsorbed, the graphene oxide (GO) is converted to a spontaneously dynamic covalent material under ambient conditions, where the dominated epoxy and hydroxyl groups are mediated by water molecules to spontaneously break/reform their C–O bonds to achieve dynamic oxygen migration. This dynamic material presents structural adaptivity for response to biomolecule adsorption. Both density functional theory calculations and ab initio molecular dynamics simulations demonstrate that this spontaneously dynamic characteristics is attributed to the adsorption of water molecules, which sharply reduces the barriers of these oxygen migration reactions on GO to the level less than or comparable to the hydrogen bonding energy in liquid water.
Received: 07 May 2020      Published: 29 May 2020
PACS:  68.37.-d (Microscopy of surfaces, interfaces, and thin films)  
  68.90.+g (Other topics in structure, and nonelectronic properties of surfaces and interfaces; thin films and low-dimensional structures)  
  61.48.Gh (Structure of graphene)  
  87.90.+y (Other topics in biological and medical physics)  
Fund: *Supported by the National Natural Science Foundation of China (Grant Nos. 11675138, 11705160, 11605151, U1832150, U1932123 and 11974366), the National Science Fund for Outstanding Young Scholars (Grant No. 11722548), the Key Research Program of Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SLH053), the Fundamental Research Funds for the Central Universities, the Special Program for Applied Research on Supercomputation of the NSFC-Guangdong Joint Fund (the second stage), Supercomputer Center of CAS, and the BL01B Beamline of NFPS at SSRF.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/6/066803       OR      https://cpl.iphy.ac.cn/Y2020/V37/I6/066803
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yusong Tu
Liang Zhao
Jiajia Sun
Yuanyan Wu
Xiaojie Zhou
Liang Chen
Xiaoling Lei
Haiping Fang
Guosheng Shi
[1] Wojtecki R J, Meador M A and Rowan S J 2011 Nat. Mater. 10 14
[2] Lehn J M 2015 Angew. Chem. Int. Ed. 54 3276
[3] Lutz J F, Lehn J M, Meijer E W and Matyjaszewski K 2016 Nat. Rev. Mater. 1 16024
[4] Zou W, Dong J, Luo Y, Zhao Q and Xie T 2017 Adv. Mater. 29 1606100
[5] Chang B, Zhang M, Qing G and Sun T 2015 Small 11 1097
[6] Ni C, Zha D, Ye H, Hai Y, Zhou Y, Anslyn E V and You L 2018 Angew. Chem. 130 1314
[7] Ramström O and Lehn J M 2002 Nat. Rev. Drug Disc. 1 26
[8] Stuart M A C, Huck W T S, Genzer J et al 2010 Nat. Mater. 9 101
[9] Jin Y, Yu C, Denman R J and Zhang W 2013 Chem. Soc. Rev. 42 6634
[10] Ong W J and Swager T M 2018 Nat. Chem. 10 1023
[11] Belowich M E and Stoddart J F 2012 Chem. Soc. Rev. 41 2003
[12] Black S P, Sanders J K M and Stefankiewicz A R 2014 Chem. Soc. Rev. 43 1861
[13] Tauk L, Schröder A P, Decher G and Giuseppone N 2009 Nat. Chem. 1 649
[14] Cacciapaglia R, Di Stefano S and Mandolini L 2005 J. Am. Chem. Soc. 127 13666
[15] Lu Y X, Tournilhac F, Leibler L and Guan Z 2012 J. Am. Chem. Soc. 134 8424
[16] Wang Q, Yu C, Zhang C, Long H, Azarnoush S, Jin Y and Zhang W 2016 Chem. Sci. 7 3370
[17] Lerf A, He H, Forster M and Klinowski J 1998 J. Phys. Chem. B 102 4477
[18] Cai W W, Piner R D, Stadermann F J et al 2008 Science 321 1815
[19] Yang J, Shi G, Tu Y and Fang H 2014 Angew. Chem. Int. Ed. 53 10190
[20] Berkesi O, Josepovits K, Sanakis Y, Petridis D and Dékány I 2006 Chem. Mater. 18 2740
[21] Fu W Y, Jiang L, van Geest E P, Lima L M C and Schneider G F 2017 Adv. Mater. 29 1603610
[22] Liu Y, Dong X and Chen P 2012 Chem. Soc. Rev. 41 2283
[23] Morales-Narváez E and Merkoçci A 2018 Adv. Mater. 31 1805043
[24] Loh K P, Bao Q, Eda G and Chhowalla M 2010 Nat. Chem. 2 1015
[25] Deng D, Novoselov K S, Fu Q, Zheng N, Tian Z and Bao X 2016 Nat. Nanotechnol. 11 218
[26] Gu Z J, Zhu S, Yan L, Zhao F and Zhao Y L 2019 Adv. Mater. 31 27 1800662
[27] Kostarelos K 2016 Nat. Rev. Mater. 1 16084
[28] Tu Y, Lv M, Xiu P et al 2013 Nat. Nanotechnol. 8 594
[29] Bitounis D, Ali-Boucetta H, Hong B H, Min D H and Kostarelos K 2013 Adv. Mater. 25 2258
[30] Chen L, Shi G S, Shen J et al 2017 Nature 550 380
[31] Vlassiouk I V 2017 Nat. Nanotechnol. 12 1022
[32] Yu X, Cheng H, Zhang M, Zhao Y, Qu L and Shi G 2017 Nat. Rev. Mater. 2 17046
[33] Novoselov K S, Falko V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 Nature 490 192
[34] Kumar P V, Bardhan N M, Tongay S, Wu J, Belcher A M and Grossman J C 2014 Nat. Chem. 6 151
[35] Kim S, Zhou S, Hu Y et al 2012 Nat. Mater. 11 544
[36] Erickson K, Erni R, Lee Z, Alem N, Gannett W and Zettl A 2010 Adv. Mater. 22 4467
[37] Suresh S J and Naik V M 2000 J. Chem. Phys. 113 9727
[38] Hummers W S and Offeman R E 1958 J. Am. Chem. Soc. 80 1339
[39] Xu Y, Bai H, Lu G, Li C and Shi G 2008 J. Am. Chem. Soc. 130 5856
[40] Pan D, Wang S, Zhao B, Wu M, Zhang H, Wang Y and Jiao Z 2009 Chem. Mater. 21 3136
[41] Dikin D A, Stankovich S, Zimney E J, Piner R D, Dommett G H B, Evmenenko G, Nguyen S T and Ruoff R S 2007 Nature 448 457
[42] Hontoria-Lucas C, López-Peinado A J, López-González D, Rojas-Cervantes M L and Martín-Aranda R M 1995 Carbon 33 1585
[43] Acik M, Lee G, Mattevi C, Pirkle A, Wallace R M, Chhowalla M, Cho K and Chabal Y 2011 J. Phys. Chem. C 115 19761
[44] Mathlouthi M, Seuvre A M and Koenig J L 1986 Carbohydr. Res. 146 1
[45] Kostarelos K and Novoselov K S 2014 Nat. Nanotechnol. 9 744
[46] Porro S, Accornero E, Pirri C F and Ricciardi C 2015 Carbon 85 383
[47] Kim S K, Kim J Y, Jang B C, Cho M S, Choi S Y, Lee J Y and Jeong H Y 2016 Adv. Funct. Mater. 26 7406
[48] Liu J, Yin Z, Cao X, Zhao F, Wang L, Huang W and Zhang H 2013 Adv. Mater. 25 233
Related articles from Frontiers Journals
[1] Lili Han, Chunhua Du, Ziguang Ma, Yang Jiang, Kanglin Xiong, Wenxin Wang, Hong Chen, Zhen Deng, and Haiqiang Jia. Effect of Pt Interlayer on Low Resistivity Ohmic Contact to p-InP Layer and Its Optimization[J]. Chin. Phys. Lett., 2021, 38(6): 066803
[2] Shuo Yang, Zhenpeng Hu, Weihai Wang, Peng Cheng, Lan Chen, and Kehui Wu. Regular Arrangement of Two-Dimensional Clusters of Blue Phosphorene on Ag(111)[J]. Chin. Phys. Lett., 2020, 37(9): 066803
[3] Yang-Yang Xu, Yu Wang, Ai-Yun Liu, Wang-Zhou Shi, Gu-Jin Hu, Shi-Min Li, Hui-Yong Deng, Ning Dai. Effect of Zr Content on Formation and Optical Properties of the Layered PbZr$_{x}$Ti$_{1-x}$O$_{3}$ Films[J]. Chin. Phys. Lett., 2020, 37(2): 066803
[4] Li Dong, Aiwei Wang, En Li, Qin Wang, Geng Li, Qing Huan, Hong-Jun Gao. Formation of Two-Dimensional AgTe Monolayer Atomic Crystal on Ag(111) Substrate[J]. Chin. Phys. Lett., 2019, 36(2): 066803
[5] Chong Wang, Hao Zhong, Eddy Simoen, Xiang-Dong Jiang, Ya-Dong Jiang, Wei Li. Structural Variation and Its Influence on the $1/f$ Noise of a-Si$_{1-x}$Ru$_{x}$ Thin Films Embedded with Nanocrystals[J]. Chin. Phys. Lett., 2019, 36(2): 066803
[6] Ai-Min Li, Lu-Dong, Xin-Yi Yang, Zhen Zhu, Guan-Yong Wang, Dan-Dan Guan, Hao Zheng, Yao-Yi Li, Canhua Liu, Dong Qian, Jin-Feng Jia. Metastable Face-Centered Cubic Structure and Structural Transition of Sn on 2H-NbSe$_{2}$ (0001)[J]. Chin. Phys. Lett., 2018, 35(6): 066803
[7] Wei-Jun Wan, Wei Ren, Xiao-Ran Meng, Yun-Xia Ping, Xing Wei, Zhong-Ying Xue, Wen-Jie Yu, Miao Zhang, Zeng-Feng Di, Bo Zhang. Improvement of Nickel-Stanogermanide Contact Properties by Platinum Interlayer[J]. Chin. Phys. Lett., 2018, 35(5): 066803
[8] Somayeh Asgary, Amir Hoshang Ramezani. Dependence of Nitrogen/Argon Reaction Gas Amount on Structural, Mechanical and Optical Properties of Thin WN$_{x}$ Films[J]. Chin. Phys. Lett., 2017, 34(12): 066803
[9] Peng Sun, Wei-Wei Yu, Xiao-Hang Pan, Wei Wei, Yan Sun, Ning-Yi Yuan, Jian-Ning Ding, Wen-Chao Zhao, Xin Chen, Ning Dai. Fluorescence Enhancement of Metal-Capped Perovskite CH$_{3}$NH$_{3}$PbI$_{3}$ Thin Films[J]. Chin. Phys. Lett., 2017, 34(9): 066803
[10] V. Dalouji, S. M. Elahi, A. Ghaderi, S. Solaymani. Porosity Evaluation and the Power Spectral Densities Analyses of Carbon–Nickel Composite Films Annealed at Different Temperatures[J]. Chin. Phys. Lett., 2016, 33(08): 066803
[11] Ling Wang, Wang Liu, Yue Li, Yun-Long Shi, Yuan-Xia Lao, Xiao-Bo Lu, Ai-Hong Deng, Yuan Wang. Diffusion Behavior of Cumulative He Doped in Cu/W Multilayer Nanofilms at Room Temperature[J]. Chin. Phys. Lett., 2016, 33(06): 066803
[12] SUN Qing-Ling, WANG Lu, WANG Wen-Qi, SUN Ling, LI Mei-Cheng, WANG Wen-Xin, JIA Hai-Qiang, ZHOU Jun-Ming, CHEN Hong. Growth and Characterization of InAs1?xSbx with Different Sb Compositions on GaAs Substrates[J]. Chin. Phys. Lett., 2015, 32(10): 066803
[13] ZHANG Xiao-Nan, MEI Xian-Xiu, MA Xue, WANG Ying-Min, QIANG Jian-Bing, WANG You-Nian. Ar12+ Induced Irradiation Damage in Bulk Metallic Glass (Cu47Zr45Al8)98.5Y1.5[J]. Chin. Phys. Lett., 2015, 32(02): 066803
[14] WANG Xian-Ying, XIE Shu-Fan, CHEN Xiao-Dong, LIU Yang-Yang. Direct Piezoelectric Potential Measurement of ZnO Nanowires Using a Kelvin Probe Force Microscope[J]. Chin. Phys. Lett., 2013, 30(4): 066803
[15] WU Dan, YIN Ya-Jun, XIE Hui-Min, DAI Fu-Long. Archimedes Spiral Cracks Developed in a Nanofilm/Substrate System[J]. Chin. Phys. Lett., 2013, 30(3): 066803
Viewed
Full text


Abstract