Chin. Phys. Lett.  2020, Vol. 37 Issue (4): 046801    DOI: 10.1088/0256-307X/37/4/046801
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Wettability and Surface Energy of Hydrogen- and Oxygen-Terminated Diamond Films
Zi-Cheng Ma, Nan Gao, Shao-Heng Cheng, Jun-Song Liu, Ming-Chao Yang, Peng Wang, Zhi-Yuan Feng, Qi-Liang Wang**, Hong-Dong Li**
State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012
Cite this article:   
Zi-Cheng Ma, Nan Gao, Shao-Heng Cheng et al  2020 Chin. Phys. Lett. 37 046801
Download: PDF(1319KB)   PDF(mobile)(1315KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The contact angle and surface energy values of diamond are systemically investigated in terms of surface treatments (hydrogen- and oxygen-terminations), structure feature (single crystal diamonds and polycrystalline diamond films), crystal orientation ((100), (111) and mixed (100)/(111) orientations), different fluids (probes of polar deionized water and nonpolar di-iodomethane). It is found that the hydrophobic/hydrophilic characteristic and surface energy values of diamond are mainly determined by the surface hydrogen/oxygen termination, and less related to the structural features and crystal orientation. Based on the contact angle values with polar water and nonpolar di-iodomethane, the surface energies of diamond are estimated to be about 43 mJ/m$^{2}$ for hydrogen-termination and about 60 mJ/m$^{2}$ for oxygen-termination. Furthermore, the varying surface roughness of diamond and fluids with different polarities examined determine the variation of contact angles as well as the surface energy values. These results would be helpful for a more detailed understanding of the surface properties of diamond films for further applications in a broad number of fields, such as optical and microwave windows, biosensors, and optoelectronic devices, etc.
Received: 04 December 2019      Published: 24 March 2020
PACS:  68.08.Bc (Wetting)  
  68.35.Md (Surface thermodynamics, surface energies)  
  68.55.-a (Thin film structure and morphology)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos. 51672102 and 51972135.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/4/046801       OR      https://cpl.iphy.ac.cn/Y2020/V37/I4/046801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zi-Cheng Ma
Nan Gao
Shao-Heng Cheng
Jun-Song Liu
Ming-Chao Yang
Peng Wang
Zhi-Yuan Feng
Qi-Liang Wang
Hong-Dong Li
[1]Nebel C and Ristein J 2003 Thin-Film Diamond I: Part of the Semiconductors and Semimetals Series (Amsterdam: Elsevier Academic Press)
[2]Malykhin S A, Houard J, Ismagilov R R, Orekhov A S, Vella A and Obraztsov A N 2018 Phys. Status Solidi B 255 1700189
[3]Matsumae T, Kurashima Y, Umezawa H, Mokuno Y and Takagi H 2018 Microelectron. Eng. 195 68
[4]Song J, Li H D, Cheng S H and Wang Q L 2014 RSC Adv. 4 32000
[5]Sobolewski S, Lodes M A, Rosiwal S M and Singer R F 2013 Surf. Coat. Technol. 232 640
[6]Zhao R and Liang Z C 2016 Chin. Phys. B 25 066801
[7]Liu H, Feng L, Zhai J, Jiang L and Zhu D B 2004 Langmuir 20 5659
[8]Zhang L Y, Xu J L and Lei J P 2019 Acta Phys. Sin. 68 020201 (in Chinese)
[9]Hansen J O, Copperthwaite R G, Derry T E and Pratt J M 1989 J. Colloid Interface Sci. 130 347
[10]Ostrovskaya L, Perevertailo V, Ralchenko V, Dementjev A and Loginova O 2002 Diamond Relat. Mater. 11 845
[11]Wu J, Ma Z B, Shen W L, Yan L, Pan X and Wang J H 2013 Acta Phys. Sin. 62 075202 (in Chinese)
[12]Ma Y B, Tong J H, Zhuang M T, Liu J S, Cheng S H, Pei X Q, Li H D and Sang D D 2019 Results Phys. 15 102628
[13]Yang Y Z, Li H D, Cheng S H, Zou G T, Wang C X and Lin Q 2014 Chem. Commun. 50 2900
[14]Zhang X F, Cui Y X, Liu X B, Sui T Y, Ji C H and Zhang D W 2019 Surf. Coat. Technol. 375 681
[15]Gribanova E V, Zhukov A N, Antonyuk I E, Benndorf C and Baskova E N 2000 Diamond Relat. Mater. 9 1
[16]Klauser F, Ghodbane S, Boukherroub R, Szunerits S, Steinmüller-Nethl D, Bertel E and Memmel N 2010 Diamond Relat. Mater. 19 474
[17]Owens D K and Wendt R C 1969 J. Appl. Polym. Sci. 13 1741
[18]Maruyama K, Makino M, Kikukawa N and Shiraishi M 1992 J. Mater. Sci. Lett. 11 116
[19]Liu F B, Wang J D, Liu B, Li X M and Chen D R 2007 Diamond Relat. Mater. 16 454
[20]Pinzari F, Ascarelli P, Cappelli E, Mattei G and Giorgi R 2001 Diamond Relat. Mater. 10 781
[21]Young T 1805 Philos. Trans. R. Soc. London 95 65
[22]Adamson W and Gast A P 1997 Physical Chemistry of Surfaces (New York: Wiley Publishing)
[23]Weide J V D, Zhang Z, Baumann P K, Wensell M G, Bernholc J and Nemanich R J 1994 Phys. Rev. B 50 5803
Related articles from Frontiers Journals
[1] Linfeng Wan, Caoyuan Mu, Yaofeng Liu, Shaoheng Cheng, Qiliang Wang, Liuan Li, Hongdong Li, and Guangtian Zou. Structure and Wettability Engineering of Polycrystalline Diamond Films Treated by Thermally Oxidation, Second Growth and Surface Termination[J]. Chin. Phys. Lett., 2022, 39(3): 046801
[2] LI Xiang-Ming. Heterogeneous Nucleation on a Conical Cavity[J]. Chin. Phys. Lett., 2014, 31(03): 046801
[3] WANG Yong-Xin, CHEN Yang, TAN Shuai-Xia, LI Yan-Fang, ZHAO Ning, XU Jian, ZHANG Li-Na. The Propulsion of a Miniature Device by Organic Fluid Jetflow through Polymer Submicron Tubes[J]. Chin. Phys. Lett., 2013, 30(12): 046801
[4] ZHANG Fu-Chun, SHA Mao-Lin, REN Xiu-Ping, WU Guo-Zhong, HU Jun, ZHANG Yi. Morphology and Wettability of [Bmim][PF6] Ionic Liquid on HOPG Substrate[J]. Chin. Phys. Lett., 2010, 27(8): 046801
[5] YUE Rui-Feng, WU Jian-Gang, ZENG Xue-Feng, KANG Ming, LIU Li-Tian. Demonstration of Four Fundamental Operations of Liquid Droplets for Digital Microfluidic Systems Based on an Electrowetting-on-Dielectric Actuator[J]. Chin. Phys. Lett., 2006, 23(8): 046801
[6] ZENG Xue-Feng, YUE Rui-Feng, WU Jian-Gang, DONG Liang, LIU Li-Tian. Actuation and Control of Droplets by Using Electrowetting-on-Dielectric[J]. Chin. Phys. Lett., 2004, 21(9): 046801
Viewed
Full text


Abstract