Chin. Phys. Lett.  2020, Vol. 37 Issue (4): 044204    DOI: 10.1088/0256-307X/37/4/044204
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Optical Properties of Atomic Defects in Hexagonal Boron Nitride Flakes under High Pressure
Xiao-Yu Zhao1,2, Jun-Hui Huang1,2, Zhi-Yao Zhuo1,2, Yong-Zhou Xue1, Kun Ding1, Xiu-Ming Dou1,2**, Jian Liu1,2, Bao-Quan Sun1,2
1State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
Xiao-Yu Zhao, Jun-Hui Huang, Zhi-Yao Zhuo et al  2020 Chin. Phys. Lett. 37 044204
Download: PDF(783KB)   PDF(mobile)(774KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the pressure spectral characteristics and the effective tuning of defect emissions in hexagonal boron nitride (hBN) at low temperatures using a diamond anvil cell (DAC). It is found that the redshift rate of emission energy is up to 10 meV/GPa, demonstrating a controllable tuning of single photon emitters through pressure. Based on the distribution character of pressure coefficients as a function of wavelength, different kinds of atomic defect states should be responsible for the observed defect emissions.
Received: 27 November 2019      Published: 24 March 2020
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
  62.50.-p (High-pressure effects in solids and liquids)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
Fund: Supported by the Postdoctoral Science Foundation of China under Grant No. Y8T0111001.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/4/044204       OR      https://cpl.iphy.ac.cn/Y2020/V37/I4/044204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiao-Yu Zhao
Jun-Hui Huang
Zhi-Yao Zhuo
Yong-Zhou Xue
Kun Ding
Xiu-Ming Dou
Jian Liu
Bao-Quan Sun
[1]Tran T T, Bray K, Ford M J, Toth M and Aharonovich I 2016 Nat. Nanotechnol. 11 37
[2]Tran T T, Elbadawi C, Totonjian D, Lobo C J, Grosso G, Moon H, Englund D R, Ford M J, Aharonovich I and Toth M 2016 ACS Nano 10 7331
[3]Jungwirth N R, Calderon B, Ji Y, Spencer M G, Flatté M E and Fuchs G D 2016 Nano Lett. 16 6052
[4]Bourrellier R, Meuret S, Tararan A, Stéphan O, Kociak M, Tizei L H G and Zobelli A 2016 Nano Lett. 16 4317
[5]Kianinia M, Regan B, Tawfik S A, Tran T T, Ford M J, Aharonovich I and Toth M 2017 ACS Photon. 4 768
[6]Konthasinghe K, Chakraborty C, Mathur N, Qiu L, Mukherjee A, Fuchs G D and Vamivakas A N 2019 Optica 6 542
[7]Gottscholl A, Kianinia M, Soltamov V, Bradac C, Kasper C, Krambrock K, Sperlich A, Toth M, Aharonovich I and Dyakonov V 2019 arXiv:1906.03774v1
[8]Jelezko F and Wrachtrup J 2006 Phys. Status Solidi 203 3207
[9]Tran T T, Wang D, Xu Z Q, Yang A, Toth M, Odom T W and Aharonovich I 2017 Nano Lett. 17 2634
[10]Nguyen M, Kim S, Tran T T, Xu Z Q, Kianinia M, Toth M and Aharonovich I 2018 Nanoscale 10 2267
[11]Li X, Scully R A, Shayan K, Luo Y and Strauf S 2019 ACS Nano 13 6992
[12]Ziegler J, Klaiss R, Blaikie A, Miller D, Horowitz V R and Alemán B J 2019 Nano Lett. 19 2121
[13]Abidi I H, Mendelson N, Tran T T, Tyagi A, Zhuang M, Weng L T, Özyilmaz B, Aharonovich I, Toth M and Luo Z 2019 Adv. Opt. Mater. 7 1900397
[14]Proscia N V, Shotan Z, Jayakumar H, Reddy P, Cohen C, Dollar M, Alkauskas A, Doherty M, Meriles C A and Menon V M 2018 Optica 5 1128
[15]Grosso G, Moon H, Lienhard B, Ali S, Efetov D K, Furchi M M, Jarillo-Herrero P, Frod M J, Aharonovich I and Englund D 2017 Nat. Commun. 8 705
[16]Xue Y, Wang H, Tan Q, Zhang J, Yu T, Ding K, Jiang D, Dou X, Shi J and Sun B 2018 ACS Nano 12 7127
[17]Shotan Z, Jayakumar H, Considine C R, Mackoit M, Fedder H, Wrachtrup J, Alkauskas A, Doherty M W, Menon V M and Meriles C A 2016 ACS Photon. 3 2490
[18]Noh G, Choi D, Kim J H, Im D G, Kim Y H, Seo H and Lee J 2018 Nano Lett. 18 4710
[19]Tawfik S A, Ali S, Fronzi M, Kianinia M, Tran T T, Stampfl C, Aharonovich I, Toth M and Ford M J 2017 Nanoscale 9 13575
[20]Korona T and Chojecki M 2019 Int. J. Quantum Chem. 119 e25925
[21]Wigger D, Schmidt R, Del Pozo-Zamudio O, Preuß J A, Tonndorf P, Schneider R, Steeger P, Kern J, Khodaei Y, Sperling J, Michaelis de Vasconcellos S, Bratschitsch R and Kuhn T 2019 2D Mater. 6 035006
[22]Gauthier M, Polian A, Besson J M and Chevy A 1989 Phys. Rev. B 40 3837
[23]Wu X, Dou X, Ding K, Zhou P, Ni H, Niu Z, Jiang D and Sun B 2013 Appl. Phys. Lett. 103 252108
[24]Ye Y, Dou X, Ding K, Chen Y, Jiang D, Yang F and Sun B 2017 Phys. Rev. B 95 245313
[25]Jungwirth N R and Fuchs G D 2017 Phys. Rev. Lett. 119 057401
[26]Schell A W, Svedendahl M and Quidant R 2018 Adv. Mater. 30 1704237
Related articles from Frontiers Journals
[1] Qiuxin Zhang, Chenhao Zhu, Yuxin Wang, Liangyu Ding, Tingting Shi, Xiang Zhang, Shuaining Zhang, and Wei Zhang. Experimental Test of Contextuality Based on State Discrimination with a Single Qubit[J]. Chin. Phys. Lett., 2022, 39(8): 044204
[2] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 044204
[3] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 044204
[4] Ao-Lin Guo , Tao Tu, Le-Tian Zhu , and Chuan-Feng Li. High-Fidelity Geometric Gates with Single Ions Doped in Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 044204
[5] Shaoxing Liu, Xuanying Lai, Ce Yang, and J. F. Chen. Towards High-Dimensional Entanglement in Path: Photon-Source Produced from a Two-Dimensional Atomic Cloud[J]. Chin. Phys. Lett., 2021, 38(8): 044204
[6] Bo Gong , Tao Tu, Ao-Lin Guo , Le-Tian Zhu , and Chuan-Feng Li. A Noise-Robust Pulse for Excitation Transfer in a Multi-Mode Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(4): 044204
[7] Hongbin Liang, Jiancheng Pei, and Xiaoguang Wang. Enhancing Phase Sensitivity in Mach–Zehnder Interferometers for Arbitrary Input States[J]. Chin. Phys. Lett., 2020, 37(7): 044204
[8] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 044204
[9] Kun-Peng Wang, Jun Zhuang, Xiao-Dong He, Rui-Jun Guo, Cheng Sheng, Peng Xu, Min Liu, Jin Wang, Ming-Sheng Zhan. High-Fidelity Manipulation of the Quantized Motion of a Single Atom via Stern–Gerlach Splitting[J]. Chin. Phys. Lett., 2020, 37(4): 044204
[10] Xing-Yu Zhu, Tao Tu, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo. Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator[J]. Chin. Phys. Lett., 2020, 37(2): 044204
[11] Shuang-Shuang Fu, Shun-Long Luo. Quantifying Process Nonclassicality in Bosonic Fields[J]. Chin. Phys. Lett., 2019, 36(10): 044204
[12] Sheng-Li Zhang, Song Yang. Methods for Derivation of Density Matrix of Arbitrary Multi-Mode Gaussian States from Its Phase Space Representation[J]. Chin. Phys. Lett., 2019, 36(9): 044204
[13] Yao Chen, Fo-Liang Lin, Xi Liang, Nian-Quan Jiang. Programmable Quantum Processor with Quantum Dot Qubits[J]. Chin. Phys. Lett., 2019, 36(7): 044204
[14] Rui Liu, Ling-Jun Kong, Zhou-Xiang Wang, Yu Si, Wen-Rong Qi, Shuang-Yin Huang, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Two-Photon Interference Constructed by Two Hong–Ou–Mandel Effects in One Mach-Zehnder Interferometer[J]. Chin. Phys. Lett., 2018, 35(9): 044204
[15] Qi Yin, Guo-Yong Xiang, Chuan-Feng Li, Guang-Can Guo. Compressed Sensing Quantum State Tomography Assisted by Adaptive Design[J]. Chin. Phys. Lett., 2018, 35(7): 044204
Viewed
Full text


Abstract