Chin. Phys. Lett.  2020, Vol. 37 Issue (4): 043201    DOI: 10.1088/0256-307X/37/4/043201
ATOMIC AND MOLECULAR PHYSICS |
Nonadiabatic and Multielectron Effects in the Attoclock Experimental Scheme
Zhi-Lei Xiao1,2, Wei Quan1**, Song-Po Xu1,2, Shao-Gang Yu1, Xuan-Yang Lai1, Jing Chen3,4**, Xiao-Jun Liu1**
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071
2University of Chinese Academy of Sciences, Beijing 100049
3HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100084
4Institute of Applied Physics and Computational Mathematics, P. O. Box 8009, Beijing 100088
Cite this article:   
Zhi-Lei Xiao, Wei Quan, Song-Po Xu et al  2020 Chin. Phys. Lett. 37 043201
Download: PDF(1143KB)   PDF(mobile)(1137KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The problem of how long it takes for an electron to tunnel from one side of a barrier to the other has been debated for decades and the attoclock is a promising experimental procedure to address this problem. In the attoclock experiment, many physical effects will contribute to the experimental results and it is difficult to extract the tunneling time accurately. We numerically investigate a method of measuring the residual equivalent temporal offset (RETO) induced by the physical effects except for tunneling delay. The Coulomb potential effect, the nonadiabatic effect, the multielectron effect, and the Stark effect are considered in the theoretical model. It is shown that the ratio of the RETO of the target atoms to that of H is insensitive to the wavelength and is linearly proportional to (2$I_{\rm p}$)$^{-3/2}$. This work can help to improve the accuracy of the attoclock technique.
Received: 22 January 2020      Published: 24 March 2020
PACS:  32.80.Fb (Photoionization of atoms and ions)  
  03.65.Sq (Semiclassical theories and applications)  
  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
Fund: Supported by the National Key Research and Development Program of China (Nos. 2019YFA0307700 and 2016YFA0401100), the National Natural Science Foundation of China (Nos. 11527807, 11774387, 11834015, 11847243, 11804374, 11874392, and 11974383), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB21010400), and the Science and Technology Department of Hubei Province (No. 2019CFA035).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/4/043201       OR      https://cpl.iphy.ac.cn/Y2020/V37/I4/043201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhi-Lei Xiao
Wei Quan
Song-Po Xu
Shao-Gang Yu
Xuan-Yang Lai
Jing Chen
Xiao-Jun Liu
[1]Meckel M et al 2008 Science 320 1478
[2]Li M et al 2019 Phys. Rev. Lett. 122 183202
[3]Henkel J et al 2012 Phys. Rev. A 85 021402
[4]Hofmann C, Landsman A S and Keller U 2019 J. Mod. Opt. 66 1052
[5]Hauge E H and Støvneng J A 1989 Rev. Mod. Phys. 61 917
[6]MacColl L A 1932 Phys. Rev. 40 621
[7]Wei C L and Zhao X 2019 Chin. Phys. B 28 013201
[8]Shu Z et al 2019 Chin. Phys. B 28 050301
[9]Shafir D et al 2012 Nature 485 343
[10]Eckle P et al 2008 Nat. Phys. 4 565
[11]Eckle P et al 2008 Science 322 1525
[12]Breidbach J and Cederbaum L S 2005 Phys. Rev. Lett. 94 033901
[13]Torlina L et al 2015 Nat. Phys. 11 503
[14]Sainadeh U S et al 2019 Nature 568 75
[15]Pfeiffer A N et al 2012 Nat. Phys. 8 76
[16]Landsman A S et al 2014 Optica 1 343
[17]Camus N et al 2017 Phys. Rev. Lett. 119 023201
[18]Yakaboylu E, Klaiber M and Hatsagortsyan K Z 2014 Phys. Rev. A 90 012116
[19]Bray A W, Eckart S and Kheifets A S 2018 Phys. Rev. Lett. 121 123201
[20]Klaiber M et al 2013 Phys. Rev. Lett. 110 153004
[21]Zimmermann T et al 2016 Phys. Rev. Lett. 116 233603
[22]Corkum P B 1993 Phys. Rev. Lett. 71 1994
[23]Paulus G G et al 1994 J. Phys. B 27 L703
[24]Xiao Z L et al 2020 Chin. Opt. Lett. 18 010201
[25]Xu S P et al 2017 Phys. Rev. A 95 063405
[26]Laudau L D and Lifshitz E M 1977 Quantum Mechanics (Oxford: Pergamon)
[27]Perelomov A M et al 1966 Sov. Phys.-JETP 24 207
[28]Mur V D et al 2001 Sov. Phys.-JETP 92 777
[29]Saliéres P et al 2001 Science 202 902
[30]Becker W et al 2002 Adv. At. Mol. Opt. Phys. 48 35
[31]Li M et al 2017 Phys. Rev. A 95 053425
[32]Han M et al 2017 Phys. Rev. A 95 023406
[33]Muller H G 1999 Phys. Rev. A 60 1341
[34]Cloux F et al 2015 Phys. Rev. A 91 023415
[35]Bonch-Bruevich A M and Khodovoǐ V A 1968 Sov. Phys. Usp. 10 637
[36]Dimitrovski D et al 2011 Phys. Rev. A 83 023405
[37]Dimitrovski D et al 2010 Phys. Rev. A 82 053404
[38]Brabec T et al 1996 Phys. Rev. A 54 R2551
Related articles from Frontiers Journals
[1] Junyang Yuan, Yixuan Ma, Renyuan Li, Huanyu Ma, Yizhu Zhang, Difa Ye, Zhenjie Shen, Tianmin Yan, Xincheng Wang, Matthias Weidemüller, Yuhai Jiang. Momentum Spectroscopy for Multiple Ionization of Cold Rubidium in the Elliptically Polarized Laser Field[J]. Chin. Phys. Lett., 2020, 37(5): 043201
[2] Xiaowei Wang, Li Wang, Fan Xiao, Dongwen Zhang, Zhihui Lü, Jianmin Yuan, Zengxiu Zhao. Generation of 88as Isolated Attosecond Pulses with Double Optical Gating[J]. Chin. Phys. Lett., 2020, 37(2): 043201
[3] Yi-Ning Huo, Jian Li, Feng-Cai Ma. Kramers–Henneberger Form of Strong Field Theory with the Correction of Dipole Approximation[J]. Chin. Phys. Lett., 2018, 35(4): 043201
[4] Jian-Xing Hao, Xiao-Lei Hao, Wei-Dong Li, Shi-Lin Hu, Jing Chen. Controlling Three-Dimensional Electron–Electron Correlation via Elliptically Polarized Intense Laser Field[J]. Chin. Phys. Lett., 2017, 34(4): 043201
[5] Fu Sun, Dong Wei, Gui-Zhong Zhang, Xin Ding, Jian-Quan Yao. Dynamic Interference Photoelectron Spectra in Double Ionization: Numerical Simulation of 1D Helium[J]. Chin. Phys. Lett., 2016, 33(12): 043201
[6] Jun-Juan Shang, Kai-Feng Cui, Jian Cao, Shao-Mao Wang, Si-Jia Chao, Hua-Lin Shu, Xue-Ren Huang. Sympathetic Cooling of $^{40}$Ca$^+$–$^{27}$Al$^+$ Ion Pair Crystal in a Linear Paul Trap[J]. Chin. Phys. Lett., 2016, 33(10): 043201
[7] Xin-Hai Tu, Xiao-Lei Hao, Wei-Dong Li, Shi-Lin Hu, Jing Chen. Nonadiabatic Effect on the Rescattering Trajectories of Electrons in Strong Laser Field Ionization Process[J]. Chin. Phys. Lett., 2016, 33(09): 043201
[8] ZHAO Yan-Ting, YUAN Jin-Peng, LI Zhong-Hao, JI Zhong-Hua, XIAO Lian-Tuan, JIA Suo-Tang. Production and Detection of Ultracold Ground State 85Rb133Cs Molecules in the Lowest Vibrational Level by Short-Range Photoassociation[J]. Chin. Phys. Lett., 2015, 32(11): 043201
[9] GUO Fu-Ming, CHEN Ji-Gen, LI Su-Yu, YANG Yu-Jun. Calculation of the Duration of the Atomic Tunneling Ionization in a Strong Electrostatic Field by Using Bohmian Trajectories Approach[J]. Chin. Phys. Lett., 2015, 32(07): 043201
[10] LIU Yu-Zhu, KNOPP Gregor, XIAO Shao-Rong, GERBER Thomas. Ultrafast Imaging of Electronic Relaxation in Ortho-xylene: New Features from Fragmentation-Ion Spectroscopy[J]. Chin. Phys. Lett., 2014, 31(12): 043201
[11] MA Kun, DONG Chen-Zhong, XIE Lu-You, QU Yi-Zhi. Polarization Transfer in the 2p3/2 Photoionization of Magnesium-Like Ions[J]. Chin. Phys. Lett., 2014, 31(10): 043201
[12] WANG Chuan-Liang, SUN Ren-Ping, CHEN Yong-Ju, GONG Cheng, LAI Xuan-Yang, KANG Hui-Peng, QUAN Wei, LIU Xiao-Jun. Above-Threshold Ionization of Xenon by Chirped Intense Laser Pulses[J]. Chin. Phys. Lett., 2014, 31(06): 043201
[13] MA Kun, DONG Chen-Zhong, XIE Lu-You, DING Xiao-Bin, QU Yi-Zhi. Polarization and Angular Distribution of L? X-Ray Following Inner-Shell 2p3/2 Photoionization of Magnesium-Like Ions[J]. Chin. Phys. Lett., 2014, 31(05): 043201
[14] ZHAN Min-Jie, YE Peng, TENG Hao, HE Xin-Kui, ZHANG Wei, ZHONG Shi-Yang, WANG Li-Feng, YUN Chen-Xia, WEI Zhi-Yi. Generation and Measurement of Isolated 160-Attosecond XUV Laser Pulses at 82 eV[J]. Chin. Phys. Lett., 2013, 30(9): 043201
[15] ZHANG Dong-Ling, TANG Qing-Bin, GAO Yang. Suppression of Recollision-Excitation Ionization in Nonsequential Double Ionization of Molecules by Mid-Infrared Laser Pulses[J]. Chin. Phys. Lett., 2013, 30(2): 043201
Viewed
Full text


Abstract