Chin. Phys. Lett.  2019, Vol. 36 Issue (9): 097101    DOI: 10.1088/0256-307X/36/9/097101
Hybridization Effects Revealed by Angle-Resolved Photoemission Spectroscopy in Heavy-Fermion Ce$_{2}$IrIn$_{8}$
Haijiang Liu1,2, Yuanji Xu1,2, Yigui Zhong1,2, Jianyu Guan1,2, Lingyuan Kong1,2, Junzhang Ma3, Yaobo Huang4, Qiuyun Chen5, Genfu Chen1,2, Ming Shi3, Yi-feng Yang1,2,6, Hong Ding1,2,6**
1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2School of Physics, University of Chinese Academy of Sciences, Beijing 100190
3Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
4Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204
5Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908
6Songshan Lake Materials Laboratory, Dongguan 523808
Cite this article:   
Haijiang Liu, Yuanji Xu, Yigui Zhong et al  2019 Chin. Phys. Lett. 36 097101
Download: PDF(980KB)   PDF(mobile)(965KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We utilize high-resolution resonant angle-resolved photoemission spectroscopy (ARPES) to study the band structure and hybridization effect of the heavy-fermion compound Ce$_{2}$IrIn$_{8}$. We observe a nearly flat band at the binding energy of 7 meV below the coherent temperature $T_{\rm coh}\sim 40$ K, which characterizes the electrical resistance maximum and indicates the onset temperature of hybridization. However, the Fermi vector and the Fermi surface volume have little change around $T_{\rm coh}$, which challenges the widely believed evolution from a high-temperature small Fermi surface to a low-temperature large Fermi surface. Our experimental results of the band structure fit well with the density functional theory plus dynamic mean-field theory calculations.
Received: 05 July 2019      Published: 23 August 2019
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Haijiang Liu
Yuanji Xu
Yigui Zhong
Jianyu Guan
Lingyuan Kong
Junzhang Ma
Yaobo Huang
Qiuyun Chen
Genfu Chen
Ming Shi
Yi-feng Yang
Hong Ding
[1]Andres K, Graebner J E and Ott H R 1975 Phys. Rev. Lett. 35 1779
[2]Stewart G R 1984 Rev. Mod. Phys. 56 755
[3]Kratochvílová M et al 2015 Sci. Rep. 5 15904
[4]Huy N T et al 2007 Phys. Rev. Lett. 99 067006
[5]Steglich F et al 1984 Physica B+C 126 82
[6]Mito T et al 2003 Phys. Rev. Lett. 90 077004
[7]Tsujimoto M et al 2014 Phys. Rev. Lett. 113 267001
[8]Okazaki R et al 2011 Science 331 439
[9]Mydosh J A and Oppeneer P M 2014 Philos. Mag. 94 3642
[10]Xu N et al 2014 Phys. Rev. B 90 085148
[11]Morris G D et al 2004 Phys. Rev. B 69 214415
[12]Thompson J D et al 2001 J. Magn. Magn. Mater. 226 5
[13]Heffner R H et al 2006 Physica B 374 184
[14]Ohishi K et al 2009 Phys. Rev. B 80 125104
[15]Yang Y and Pines D 2008 Phys. Rev. Lett. 100 096404
[16]Sakamoto I, Shomi Y and Ohara S 2003 Physica B 329 607
[17]Chen Q Y et al 2017 Phys. Rev. B 96 045107
[18]Chen Q Y et al 2018 Phys. Rev. Lett. 120 066403
[19]Chen Q Y et al 2018 Phys. Rev. B 97 075149
[20]Im H J et al 2008 Phys. Rev. Lett. 100 176402
[21]Souma S et al 2008 Physica B 403 752
[22]Kotliar G et al 2006 Rev. Mod. Phys. 78 865
[23]Haule K, Yee C H and Kim K 2010 Phys. Rev. B 81 195107
[24]Held K et al 2008 J. Phys.: Condens. Matter 20 064202
[25]Werner P et al 2006 Phys. Rev. Lett. 97 076405
[26]Pruschke T and Grewe N 1989 Z. Phys. B 74 439
[27]Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2K: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties edited by Schwarz K (Austria: Vienna University of Technology)
[28]Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[29]Ito T et al 2003 J. Phys.: Condens. Matter 15 S2149
[30]Sekiyama A et al 2000 Nature 403 396
[31]Fujimori S et al 2006 Phys. Rev. B 73 224517
[32]Raj S et al 2005 Phys. Rev. B 71 224516
[33]Patil S et al 2016 Nat. Commun. 7 11029
[34]Klotz J et al 2018 Phys. Rev. B 97 165120
Related articles from Frontiers Journals
[1] Zi-Yi Liu, Qing-Xin Dong, Peng-Fei Shan, Yi-Yan Wang, Jian-Hong Dai, Rajesh Jana, Ke-Yu Chen, Jian-Ping Sun, Bo-Sen Wang, Xiao-Hui Yu, Guang-Tong Liu, Yoshiya Uwatoko, Yu Sui, Huai-Xin Yang, Gen-Fu Chen, Jin-Guang Cheng. Pressure-Induced Metallization and Structural Phase Transition in the Quasi-One-Dimensional TlFeSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(4): 097101
[2] Chuang Chen, Xiao Yan Xu, Yang Qi, Zi Yang Meng. Metal to Orthogonal Metal Transition[J]. Chin. Phys. Lett., 2020, 37(4): 097101
[3] Li-Han Chen, Da Wang, Yi Zhou, Qiang-Hua Wang. Superconductivity, Pair Density Wave, and Néel Order in Cuprates[J]. Chin. Phys. Lett., 2020, 37(1): 097101
[4] Hui Liang, Shuai Zhang, Yu-Jia Long, Jun-Bao He, Jing Li, Xin-Min Wang, Zhi-An Ren, Gen-Fu Chen. Magnetic and Transport Properties of the Kondo Lattice Compound YbPtAs[J]. Chin. Phys. Lett., 2018, 35(7): 097101
[5] Xin-Bei Xia, Bin Shen, Michael Smidman, Ye Chen, Hanoh Lee, Hui-Qiu Yuan. Tuning the Heavy Fermion State of CeFeGe$_{3}$ by Ru Doping[J]. Chin. Phys. Lett., 2018, 35(6): 097101
[6] Hong-Hua Zhong, Zheng Zhou, Bo Zhu, Yong-Guan Ke, Chao-Hong Lee. Floquet Bound States in a Driven Two-Particle Bose–Hubbard Model with an Impurity[J]. Chin. Phys. Lett., 2017, 34(7): 097101
[7] LI Li, WANG Bao-Tian, ZHANG Ping. Ideal Strengths and Bonding Properties of UO2 under Tension[J]. Chin. Phys. Lett., 2015, 32(03): 097101
[8] LI Hai-Chao, XIANG Yuan-Yuan, WANG Qiang-Hua. Consistency between Itinerant and Local-Moment Pictures for Superconductivity in Alkaline Iron Selenide Superconductors[J]. Chin. Phys. Lett., 2014, 31(06): 097101
[9] YU Zhi-Ming, LIU Yu-Liang. A New Perspective to Study the Correlation Effect of the Three-Dimensional Electron Gas[J]. Chin. Phys. Lett., 2014, 31(1): 097101
[10] WU Quan-Sheng, WANG Yi-Lin, FANG Zhong, DAI Xi. Acceleration of the Stochastic Analytic Continuation Method via an Orthogonal Polynomial Representation of the Spectral Function[J]. Chin. Phys. Lett., 2013, 30(9): 097101
[11] LIU Yu-Liang. An Effective Description of Electron Correlation in the Green Function Approach[J]. Chin. Phys. Lett., 2013, 30(4): 097101
[12] YU Zhi-Ming, GUO Qian, LIU Yu-Liang. New Method to Deal with Three-Dimensional Electron Gas with a Strong Correlation Effect[J]. Chin. Phys. Lett., 2012, 29(12): 097101
[13] AO Bing-Yun**, AI Juan-Juan, GAO Tao**, WANG Xiao-Lin, SHI Peng, CHEN Pi-Heng, YE Xiao-Qiu. Metal-Insulator Transition of Plutonium Hydrides: DFT+U Calculations in the FPLAPW Basis[J]. Chin. Phys. Lett., 2012, 29(1): 097101
[14] WU Xue-Wei, ZHANG Hai-Xin, LIU Xiao-Jun**, ZHANG Xing-Gan** . Optical Properties and Photocatalytic Activity of Marokite-Type CaMn2O4[J]. Chin. Phys. Lett., 2011, 28(10): 097101
[15] WANG Bao-Tian, ZHANG Ping** . Ideal Strengths and Bonding Properties of PuO2 under Tension[J]. Chin. Phys. Lett., 2011, 28(4): 097101
Full text