Chin. Phys. Lett.  2019, Vol. 36 Issue (11): 114302    DOI: 10.1088/0256-307X/36/11/114302
Acoustic Vortex Beam Generation by a Piezoelectric Transducer Using Spiral Electrodes
Han Zhang1**, Yang Gao2
1Key Laboratory of Noise and Vibration, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190
2College of Science, China Agricultural University, Beijing 100083
Cite this article:   
Han Zhang, Yang Gao 2019 Chin. Phys. Lett. 36 114302
Download: PDF(973KB)   PDF(mobile)(964KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose an innovative method to generate acoustic vortex waves based on a disc piezoelectric transducer that is coated with multi-arm coiled electrodes. Finite element simulation results for single-arm to four-arm coiled electrodes indicate that the method could modulate amplitude and phase spatial distribution of the acoustic waves near the acoustic axis by acoustic field synthesis principle, making the waves rotate spirally in space and form stable focused vortex beams. Compared with the traditional method that requires electronic control of an array consisting of a large number of transducers, this method provides a more effective and compact solution.
Received: 19 June 2019      Published: 21 October 2019
PACS:  43.20.+g (General linear acoustics)  
  47.32.-y (Vortex dynamics; rotating fluids)  
  43.38.-p (Transduction; acoustical devices for the generation and reproduction of sound)  
  02.70.Dh (Finite-element and Galerkin methods)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11772349, 11472299, 51704015, 11972354 and 11972365 and the China Agricultural University Education Foundation under Grant No 1101-240001.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Han Zhang
Yang Gao
[1]Jiang X, Li Y, Liang B et al 2016 Phys. Rev. Lett. 117 034301
[2]Hong Z Y, Zhang J and Drinkwater B W 2015 Phys. Rev. Lett. 114 214301
[3]Wunenburger R, Lozano J I V and Brasselet E 2015 New J. Phys. 17 103022
[4]Shi C, Dubois M, Wang Y et al 2017 Proc. Natl. Acad. Sci. USA 114 7250
[5]Marzo A, Caleap M and Drinkwater B W 2018 Phys. Rev. Lett. 120 044301
[6]Skeldon K D, Wilson C, Edgar M et al 2008 New J. Phys. 10 013018
[7]Yao A M and Padgett M J 2011 Adv. Opt. Photon. 3 161
[8]Baresch D, Thomas J L and Marchiano R 2016 Phys. Rev. Lett. 116 024301
[9]Lekner J 2006 J. Acoust. Soc. Am. 120 3475
[10]Ren Y, Li L, Wang Z et al 2016 Sci. Rep. 6 33306
[11]Anhäuser A, Wunenburger R and Brasselet E 2012 Phys. Rev. Lett. 109 034301
[12]Courtney C R P, Demore C E M, Wu H, Grinenko A et al 2014 Appl. Phys. Lett. 104 154103
[13]Tran S B Q, Marmottant P and Thibault P 2012 Appl. Phys. Lett. 101 114103
[14]Qi M, Liu J, Mao Y et al 2018 Chin. Phys. B 27 14301
[15]Sun W, Liu G, Xia H et al 2018 Chin. Phys. B 27 84301
[16]Wang S and Lin S 2019 Acta Phys. Sin. 68 024303 (in Chinese)
[17]Xu Z, Qian M, Cheng Q and Liu X 2016 Chin. Phys. Lett. 33 114302
[18]Yu S, Ni X, Xu Y, He C et al 2016 Chin. Phys. Lett. 33 044302
[19]Hefner B T and Marston P L 1999 J. Acoust. Soc. Am. 106 3313
[20]Marchiano R and Thomas J L 2005 Phys. Rev. E 71 066616
[21]Padgett M J 2017 Opt. Express 25 11265
[22]Ealo J L, Prieto J C and Seco F 2011 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58 1651
[23]Gspan S, Meyer A, Bernet S and Ritsch-Marte M 2004 J. Acoust. Soc. Am. 115 1142
[24]Jiang X, Liang B, Cheng J and Qiu C 2018 Adv. Mater. 30 1800257
[25]Jiang X, Zhao J, Liu S et al 2016 Appl. Phys. Lett. 108 203501
[26]Qian Z, Shang D, Sun Q et al 2019 Acta Phys. Sin. 68 024301 (in Chinese)
[27]Tang J, Piao S and Zhang H 2017 Chin. Phys. B 26 114301
[28]Yang D, Zhang R, Shi S 2018 Acta Phys. Sin. 67 244301 (in Chinese)
Related articles from Frontiers Journals
[1] Hong-Juan Yang, Jian Li, Xiang Gao, Jun Ma, Jun-Hong Li, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media by Snapshot Time Reversal and Reverse Time Migration Mixed Method[J]. Chin. Phys. Lett., 2019, 36(11): 114302
[2] Hang Yang, Xin Zhang, Jian-hua Guo, Fu-gen Wu, Yuan-wei Yao. Influence of Coating Layer on Acoustic Wave Propagation in a Random Complex Medium with Resonant Scatterers[J]. Chin. Phys. Lett., 2019, 36(8): 114302
[3] Cun Wang, Shan-De Li, Wei-Guang Zheng, Qi-Bai Huang. Acoustic Absorption Characteristics of New Underwater Omnidirectional Absorber[J]. Chin. Phys. Lett., 2019, 36(4): 114302
[4] Zhi-Miao Lu, Li Cai, Ji-Hong Wen, Xing Chen. Physically Realizable Broadband Acoustic Metamaterials with Anisotropic Density[J]. Chin. Phys. Lett., 2019, 36(2): 114302
[5] H. Barati, Z. Basiri, A. Abdolali. Acoustic Multi Emission Lens via Transformation Acoustics[J]. Chin. Phys. Lett., 2018, 35(10): 114302
[6] Jie Hu, Bin Liang, Xiao-Jun Qiu. Transparent and Ultra-lightweight Design for Ultra-Broadband Asymmetric Transmission of Airborne Sound[J]. Chin. Phys. Lett., 2018, 35(2): 114302
[7] Zheng Xu, Meng-Lu Qian, Qian Cheng, Xiao-Jun Liu. Manipulating Backward Propagation of Acoustic Waves by a Periodical Structure[J]. Chin. Phys. Lett., 2016, 33(11): 114302
[8] Si-Yuan Yu, Xu Ni, Ye-Long Xu, Cheng He, Priyanka Nayar, Ming-Hui Lu, Yan-Feng Chen. Extraordinary Acoustic Transmission in a Helmholtz Resonance Cavity-Constructed Acoustic Grating[J]. Chin. Phys. Lett., 2016, 33(04): 114302
[9] Wen-Fa Zhu, Hai-Yan Zhang, Jian Xu, Xiao-Dong Chai. Three-Dimensional Scattering of an Incident Plane Shear Horizontal Guided Wave by a Partly through-Thickness Hole in a Plate[J]. Chin. Phys. Lett., 2016, 33(01): 114302
[10] ZHANG Hai-Yan, XU Jian, MA Shi-Wei. High-Frequency Guided Wave Scattering by a Partly Through-Thickness Hole Based on 3D Theory[J]. Chin. Phys. Lett., 2015, 32(08): 114302
[11] REN Shu-Wei, MENG Han, XIN Feng-Xian, LU Tian-Jian. Sound Absorption Enhancement by Thin Multi-Slit Hybrid Structures[J]. Chin. Phys. Lett., 2015, 32(01): 114302
[12] HUANG Nai-Xing, LÜ Tian-Quan, ZHANG Rui, WANG Yu-Ling, CAO Wen-Wu. Guided Wave Propagation in a Gold Electrode Film on a Pb(Mg1/3Nb2/3)O3–33%PbTiO3 Ferroelectric Single Crystal Substrate[J]. Chin. Phys. Lett., 2014, 31(10): 114302
[13] CAI Li, WEN Ji-Hong, YU Dian-Long, LU Zhi-Miao, WEN Xi-Sen. Design of the Coordinate Transformation Function for Cylindrical Acoustic Cloaks with a Quantity of Discrete Layers[J]. Chin. Phys. Lett., 2014, 31(09): 114302
[14] ZHANG Hai-Yan, YAO Jie-Cong, MA Shi-Wei. Scattering of S0 Lamb Mode from a Blind Hole in a Plate Using Mindlin/Mindlin Plate Theory[J]. Chin. Phys. Lett., 2014, 31(03): 114302
[15] JIANG Xue-Ping, QIAN Meng-Lu, CHENG Qian. Schlieren Visualization of Acoustic Propagation Characteristics in a One-Dimensional Phononic Crystal[J]. Chin. Phys. Lett., 2013, 30(8): 114302
Full text