Chin. Phys. Lett.  2019, Vol. 36 Issue (10): 107101    DOI: 10.1088/0256-307X/36/10/107101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Pressure-Induced Metallization Accompanied by Elongated S–S Dimer in Charge Transfer Insulator NiS$_{2}$
Hao Wu1,2, Yong-Hui Zhou2**, Yi-Fang Yuan2,3, Chun-Hua Chen2,3, Ying Zhou2,3, Bo-Wen Zhang2,3, Xu-Liang Chen2, Chuan-Chuan Gu2, Chao An4, Shu-Yang Wang2,3, Meng-Yao Qi4, Ran-Ran Zhang2, Li-Li Zhang5, Xin-Jian Li1**, Zhao-Rong Yang2,3,4**
1Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052
2Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031
3University of Science and Technology of China, Hefei 230026
4Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601
5Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204
Cite this article:   
Hao Wu, Yong-Hui Zhou, Yi-Fang Yuan et al  2019 Chin. Phys. Lett. 36 107101
Download: PDF(1071KB)   PDF(mobile)(1042KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The insulator-metal transition triggered by pressure in charge transfer insulator NiS$_{2}$ is investigated by combining high-pressure electrical transport, synchrotron x-ray diffraction and Raman spectroscopy measurements up to 40–50 GPa. Upon compression, we show that the metallization firstly appears in the low temperature region at $\sim$3.2 GPa and then extends to room temperature at $\sim $8.0 GPa. During the insulator-metal transition, the bond length of S–S dimer extracted from the synchrotron x-ray diffraction increases with pressure, which is supported by the observation of abnormal red-shift of the Raman modes between 3.2 and 7.1 GPa. Considering the decreasing bonding-antibonding splitting due to the expansion of S–S dimer, the charge gap between the S-$pp\pi^*$ band and the upper Hubbard band of Ni-3$d$ $e_{\rm g}$ state is remarkably decreased. These results consistently indicate that the elongated S–S dimer plays a predominant role in the insulator-metal transition under high pressure, even though the $p$-$d$ hybridization is enhanced simultaneously, in accordance with a scenario of charge-gap-controlled type.
Received: 14 June 2019      Published: 21 September 2019
PACS:  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  78.30.Am (Elemental semiconductors and insulators)  
  72.20.Dp (General theory, scattering mechanisms)  
  61.05.cp (X-ray diffraction)  
Fund: Supported by the National Key Research and Development Program of China under Grant Nos 2018YFA0305700 and 2016YFA0401804, the National Natural Science Foundation of China under Grant Nos 11574323, 11704387, 11874362, 11804344, 11804341, 61774136, 11605276 and U1632275, the Major Program of Development Foundation of Hefei Center for Physical Science and Technology under Grant No 2018ZYFX002, the Users with Excellence Project of Hefei Science Center of Chinese Academy of Sciences under Grant No 2018HSC-UE012, the Natural Science Foundation of Anhui Province under Grant Nos 1808085MA06, 1908085QA18 and 1708085QA19, and the Director's Fund of Hefei Institutes of Physical Science of Chinese Academy of Sciences under Grant No YZJJ201621.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/10/107101       OR      https://cpl.iphy.ac.cn/Y2019/V36/I10/107101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hao Wu
Yong-Hui Zhou
Yi-Fang Yuan
Chun-Hua Chen
Ying Zhou
Bo-Wen Zhang
Xu-Liang Chen
Chuan-Chuan Gu
Chao An
Shu-Yang Wang
Meng-Yao Qi
Ran-Ran Zhang
Li-Li Zhang
Xin-Jian Li
Zhao-Rong Yang
[1]Mott N F 1968 Rev. Mod. Phys. 40 677
[2]Imada M, Fujimori A and Tokura Y 1998 Rev. Mod. Phys. 70 1039
[3]Yao X, Honig J M, Hogan T, Kannewurf C and Spałek J 1996 Phys. Rev. B 54 17469
[4]Bouchard R J, Gillson J L and Jarrett H S 1973 Mater. Res. Bull. 8 489
[5]Kuneš J, Baldassarre L, Schächner B, Rabia K, Kuntscher C A, Korotin D M, Anisimov V I, McLeod J A, Kurmaev E Z and Moewes A 2010 Phys. Rev. B 81 035122
[6]Mori N, Mitsui T and Yomo S 1973 Solid State Commun. 13 1083
[7]Husmann A, Jin D S, Zastavker Y V, Rosenbaum T F, Yao X and Honig J M 1996 Science 274 1874
[8]Miyasaka S, Takagi H, Sekine Y, Takahashi H, Môri N and Cava R J 2000 J. Phys. Soc. Jpn. 69 3166
[9]Niklowitz P G, Alireza P L, Steiner M J, Lonzarich G G, Braithwaite D, Knebel G, Flouquet J and Wilson J A 2008 Phys. Rev. B 77 115135
[10]Feng Y, Jaramillo R, Banerjee A, Honig J M and Rosenbaum T F 2011 Phys. Rev. B 83 035106
[11]Friedemann S, Chang H, Gamża M B, Reiss P, Chen X, Alireza P, Coniglio W A, Graf D, Tozer S and Grosche F M 2016 Sci. Rep. 6 25335
[12]Zaanen J, Sawatzky G A and Allen J W 1985 Phys. Rev. Lett. 55 418
[13]Matsuura A Y, Shen Z X, Dessau D S, Park C H, Thio T, Bennett J W and Jepsen O 1996 Phys. Rev. B 53 R7584
[14]Bocquet A E, Mizokawa T, Saitoh T, Namatame H and Fujimori A 1992 Phys. Rev. B 46 3771
[15]Honig J M and Spałek J 1998 Chem. Mater. 10 2910
[16]Kwizera P, Dresselhaus M S and Adler D 1980 Phys. Rev. B 21 2328
[17]Matsuura M, Hiraka H, Yamada K and Endoh Y 2000 J. Phys. Soc. Jpn. 69 1503
[18]Matsuura A Y, Watanabe H, Kim C, Doniach S, Shen Z X, Thio T and Bennett J W 1998 Phys. Rev. B 58 3690
[19]Mamiya K, Mizokawa T, Fujimori A, Miyadai T, Chandrasekharan N, Krishnakumar S R, Sarma D D, Takahashi H, Môri N and Suga S 1998 Phys. Rev. B 58 9611
[20]Krishnakumar S R and Sarma D D 2003 Phys. Rev. B 68 155110
[21]Iwaya K, Kohsaka Y, Satow S, Hanaguri T, Miyasaka S and Takagi H 2004 Phys. Rev. B 70 161103
[22]Perucchi A, Marini C, Valentini M, Postorino P, Sopracase R, Dore P, Hansmann P, Jepsen O, Sangiovanni G, Toschi A, Held K, Topwal D, Sarma D D and Lupi S 2009 Phys. Rev. B 80 073101
[23]Xu H C, Zhang Y, Xu M, Peng R, Shen X P, Strocov V N, Shi M, Kobayashi M, Schmitt T, Xie B P and Feng D L 2014 Phys. Rev. Lett. 112 087603
[24]Schuster C, Gatti M and Rubio A 2012 Eur. Phys. J. B 85 325
[25]Marini C, Perucchi A, Chermisi D, Dore P, Valentini M, Topwal D, Sarma D D, Lupi S and Postorino P 2011 Phys. Rev. B 84 235134
[26]Han G, Choi S, Cho H, Sohn B, Park J G and Kim C 2018 Phys. Rev. B 98 125114
[27]Moon C Y, Kang H, Jang B G and Shim J H 2015 Phys. Rev. B 92 235130
[28]Fujii T, Tanaka K, Marumo F and Noda Y 1987 JOM 13 448
[29]Endo S, Mitsui T and Miyadai T 1973 Phys. Lett. A 46 29
[30]Krill G, Lapierre M F, Robert C, Gautier F, Czjzek G, Fink J and Schmidt H 1976 J. Phys. C 9 761
[31]Yao X and Honig J M 1994 Mater. Res. Bull. 29 709
[32]Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673
[33]Prescher C and Prakapenka V B 2015 High Press. Res. 35 223
[34]Toby B H 2001 J. Appl. Crystallogr. 34 210
[35]Matsuura M, Endoh Y, Hiraka H, Yamada K, Mishchenko A S, Nagaosa N and Solovyev I V 2003 Phys. Rev. B 68 094409
[36]Higo T and Nakatsuji S 2015 J. Phys. Soc. Jpn. 84 053702
[37]Thio T and Bennett J W 1994 Phys. Rev. B 50 10574
[38]Sarma D D, Krishnakumar S R, Weschke E, Schüßler-Langeheine C, Mazumdar C, Kilian L, Kaindl G, Mamiya K, Fujimori S I, Fujimori A and Miyadai T 2003 Phys. Rev. B 67 155112
[39]Clark C and Friedemann S 2016 J. Magn. Magn. Mater. 400 56
[40]Birch F 1947 Phys. Rev. 71 809
[41]Suzuki T, Uchinokura K, Sekine T and Matsuura E 1977 Solid State Commun. 23 847
[42]Lemos V, Gualberto G M, Salzberg J B and Cerdeira F 1980 Phys. Status Solidi B 100 755
[43]Kleppe A K and Jephcoat A P 2004 Mineral. Mag. 68 433
Related articles from Frontiers Journals
[1] Fanwei Liu, Sisi Huang, Sidan Chen, Xinzhong Chen, Mengkun Liu, Kuijuan Jin, and Xi Chen. Infrared Nano-Imaging of Electronic Phase across the Metal–Insulator Transition of NdNiO$_3$ Films[J]. Chin. Phys. Lett., 2022, 39(7): 107101
[2] Sheng Wang, Zia ur Rehman, Zhanfeng Liu, Tongrui Li, Yuliang Li, Yunbo Wu, Hongen Zhu, Shengtao Cui, Yi Liu, Guobin Zhang, Li Song, and Zhe Sun. Tailoring of Bandgap and Spin-Orbit Splitting in ZrSe$_{2}$ with Low Substitution of Ti for Zr[J]. Chin. Phys. Lett., 2022, 39(7): 107101
[3] Chuang Xie, Ling Hu, Ran-Ran Zhang, Shun-Jin Zhu, Min Zhu, Ren-Huai Wei, Xian-Wu Tang, Wen-Hai Song, Xue-Bin Zhu, and Yu-Ping Sun. Concurrent Structural and Electronic Phase Transitions in V$_2$O$_3$ Thin Films with Sharp Resistivity Change[J]. Chin. Phys. Lett., 2021, 38(7): 107101
[4] Aolin Li, Wenzhe Zhou, Jiangling Pan, Qinglin Xia, Mengqiu Long, and Fangping Ouyang. Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(10): 107101
[5] Jun Zhang, Mei-Ling Jin, Xiang Li, Xian-Cheng Wang, Jian-Fa Zhao, Ying Liu, Lei Duan, Wen-Min Li, Li-Peng Cao, Bi-Juan Chen, Li-Juan Wang, Fei Sun, Yong-Gang Wang, Liu-Xiang Yang, Yu-Ming Xiao, Zheng Deng, Shao-Min Feng, Chang-Qing Jin, and Jin-Long Zhu. Structure-Spin-Transport Anomaly in Quasi-One-Dimensional Ba$_{9}$Fe$_{3}$Te$_{15}$ under High Pressure[J]. Chin. Phys. Lett., 2020, 37(8): 107101
[6] Zi-Yi Liu, Qing-Xin Dong, Peng-Fei Shan, Yi-Yan Wang, Jian-Hong Dai, Rajesh Jana, Ke-Yu Chen, Jian-Ping Sun, Bo-Sen Wang, Xiao-Hui Yu, Guang-Tong Liu, Yoshiya Uwatoko, Yu Sui, Huai-Xin Yang, Gen-Fu Chen, Jin-Guang Cheng. Pressure-Induced Metallization and Structural Phase Transition in the Quasi-One-Dimensional TlFeSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(4): 107101
[7] Xin-Min Wang, Ling-Xiao Zhao, Jing Li, Mo-Ran Gao, Wen-Liang Zhu, Chao-Yang Ma, Yi-Yan Wang, Shuai Zhang, Zhi-An Ren, Gen-Fu Chen. Negative Longitudinal Magnetoresistance in the $c$-Axis Resistivity of Cd[J]. Chin. Phys. Lett., 2019, 36(5): 107101
[8] Moran Gao, Junbao He, Wenliang Zhu, Shuai Zhang, Xinmin Wang, Jing Li, Chaoyang Ma, Hui Liang, Zhian Ren, Genfu Chen. Magnetotransport Properties of a Nodal Line Semimetal TiSi[J]. Chin. Phys. Lett., 2018, 35(11): 107101
[9] J. E. Taylor, Z. Zhang, G. Cao, L. H. Haber, R. Jin, E. W. Plummer. Electronic Phase Transition of IrTe$_{2}$ Probed by Second Harmonic Generation[J]. Chin. Phys. Lett., 2018, 35(9): 107101
[10] Xia-Yin Liu, Jia-Lu Wang, Wei You, Ting-Ting Wang, Hai-Yang Yang, Wen-He Jiao, Hong-Ying Mao, Li Zhang, Jie Cheng, Yu-Ke Li. Anisotropic Magnetoresistivity in Semimetal TaSb$_2$[J]. Chin. Phys. Lett., 2017, 34(12): 107101
[11] Yan Li, Zhao Sun, Jia-Wei Cai, Jian-Ping Sun, Bo-Sen Wang, Zhi-Ying Zhao, Y. Uwatoko, Jia-Qiang Yan, Jin-Guang Cheng. Pressure-Induced Charge-Order Melting and Reentrant Charge Carrier Localization in the Mixed-Valent Pb$_{3}$Rh$_{7}$O$_{15}$[J]. Chin. Phys. Lett., 2017, 34(8): 107101
[12] Ling-Xiao Zhao, Xiao-Chun Huang, Yu-Jia Long, Dong Chen, Hui Liang, Zhan-Hai Yang, Mian-Qi Xue, Zhi-An Ren, Hong-Ming Weng, Zhong Fang, Xi Dai, Gen-Fu Chen. Anomalous Magneto-Transport Behavior in Transition Metal Pentatelluride HfTe$_{5}$[J]. Chin. Phys. Lett., 2017, 34(3): 107101
[13] Zhang-Yin Zhai, Qi-Yun Xie, Gui-Bin Chen, Xiao-Shan Wu, Ju Gao. Current-Induced Reversible Resistance Jumps in La$_{0.8}$Ca$_{0.2}$MnO$_{3}$ Microbridge[J]. Chin. Phys. Lett., 2016, 33(05): 107101
[14] SUI Peng-Fei, DAI Zhen-Hong, ZHANG Xiao-Ling, ZHAO Yin-Chang. Electronic Structure and Optical Properties in Uranium Dioxide: the First Principle Calculations[J]. Chin. Phys. Lett., 2015, 32(07): 107101
[15] LI Ming-Ying, LIU Zheng-Tai, YANG Hai-Feng, ZHAO Jia-Lin, YAO Qi, FAN Cong-Cong, LIU Ji-Shan, GAO Bo, SHEN Da-Wei, XIE Xiao-Ming. Tuning the Electronic Structure of Sr2IrO4 Thin Films by Bulk Electronic Doping Using Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2015, 32(5): 107101
Viewed
Full text


Abstract