Chin. Phys. Lett.  2018, Vol. 35 Issue (7): 076802    DOI: 10.1088/0256-307X/35/7/076802
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Quantum Anomalous Hall Multilayers Grown by Molecular Beam Epitaxy
Gaoyuan Jiang1†, Yang Feng1†, Weixiong Wu1, Shaorui Li1, Yunhe Bai1, Yaoxin Li1, Qinghua Zhang2, Lin Gu2, Xiao Feng1, Ding Zhang1, Canli Song1, Lili Wang1, Wei Li1, Xu-Cun Ma1, Qi-Kun Xue1, Yayu Wang1**, Ke He1**
1State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084
2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
Gaoyuan Jiang, Yang Feng, Weixiong Wu et al  2018 Chin. Phys. Lett. 35 076802
Download: PDF(2195KB)   PDF(mobile)(2201KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Quantum anomalous Hall (QAH) effect is a quantum Hall effect that occurs without the need of external magnetic field. A system composed of multiple parallel QAH layers is an effective high Chern number QAH insulator and the key to the applications of the dissipationless chiral edge channels in low energy consumption electronics. Such a QAH multilayer can also be engineered into other exotic topological phases such as a magnetic Weyl semimetal with only one pair of Weyl points. This work reports the first experimental realization of QAH multilayers in the superlattices composed of magnetically doped (Bi,Sb)$_{2}$Te$_{3}$ topological insulator and CdSe normal insulator layers grown by molecular beam epitaxy. The obtained multilayer samples show quantized Hall resistance $h/Ne^{2}$, where $h$ is Planck's constant, $e$ is the elementary charge and $N$ is the number of the magnetic topological insulator layers, resembling a high Chern number QAH insulator. The QAH multilayers provide an excellent platform to study various topological states of matter.
Received: 08 June 2018      Published: 09 June 2018
PACS:  68.35.bg (Semiconductors)  
  73.23.Ad (Ballistic transport)  
  71.20.Nr (Semiconductor compounds)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: Supported by the National Key Research and Development Program of China under Grant No 2017YFA0303303, the National Natural Science Foundation of China under Grant No 51661135024, and the Beijing Advanced Innovation Center for Future Chip (ICFC).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/7/076802       OR      https://cpl.iphy.ac.cn/Y2018/V35/I7/076802
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Gaoyuan Jiang
Yang Feng
Weixiong Wu
Shaorui Li
Yunhe Bai
Yaoxin Li
Qinghua Zhang
Lin Gu
Xiao Feng
Ding Zhang
Canli Song
Lili Wang
Wei Li
Xu-Cun Ma
Qi-Kun Xue
Yayu Wang
Ke He
[1]Haldane F D M 2017 Rev. Mod. Phys. 89 040502
[2]Wang J, Lian B and Zhang S C 2015 Phys. Scr. 2015(T164) 014003
[3]Zhang X and Zhang S C 2012 Proc. SPIE-Int. Soc. Opt. Eng. 8373 837309
[4]Chang C Z, Zhang J, Feng X et al 2013 Science 340 167
[5]Checkelsky J G, Yoshimi R, Tsukazaki A et al 2014 Nat. Phys. 10 731
[6]Kou X, Guo S T, Fan Y et al 2014 Phys. Rev. Lett. 113 137201
[7]Kandala A, Richardella A, Kempinger S et al 2015 Nat. Commun. 6 7434
[8]Chang C Z, Zhao W, Kim D Y et al 2015 Nat. Mater. 14 473
[9]Ou Y, Liu C, Jiang G et al 2018 Adv. Mater. 30 1703062
[10]Komiyama S, Sakuma H, Ikushima K and Hirakawa K 2006 Phys. Rev. B 73 045333
[11]Wang J, Lian B, Zhang H et al 2013 Phys. Rev. Lett. 111 136801
[12]Datta S 2006 Quantum Transport: Atom to Transistor (New York: Cambridge University Press)
[13]Burkov A A and Balents L 2011 Phys. Rev. Lett. 107 127205
[14]Eisenstein J P and MacDonald A H 2004 Nature 432 691
[15]Eisenstein J P 2014 Annu. Rev. Condens. Matter Phys. 5 159
[16]Shyju T S, Anandhi S, Indirajith R and Gopalakrishnan R 2011 J. Cryst. Growth 337 38
[17]Yan B and Felser C 2017 Annu. Rev. Condens. Matter Phys. 8 337
[18]Weng H, Fang C, Fang Z et al 2015 Phys. Rev. X 5 011029
[19]Huang S M, Xu S Y, Belopolski I et al 2015 Nat. Commun. 6 7373
[20]Xu S Y, Belopolski I, Alidoust N et al 2015 Science 349 613
[21]Lv B Q, Weng H M, F B B et al 2015 Phys. Rev. X 5 031013
[22]Yang L X, Liu Z K, Sun Y et al 2015 Nat. Phys. 11 728
[23]Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101
[24]Xu G, Weng H, Wang Z et al 2011 Phys. Rev. Lett. 107 186806
[25]Bulmash D, Liu C X and Qi X L 2014 Phys. Rev. B 89 081106(R)
Related articles from Frontiers Journals
[1] Xuguang Wang, Bingyu Xia, Jian Gou, Peng Cheng, Yong Xu, Lan Chen, Kehui Wu. Symmetry Breaking and Reversible Hydrogenation of Two-Dimensional Semiconductor Sn$_{2}$Bi[J]. Chin. Phys. Lett., 2020, 37(6): 076802
[2] Xuguang Wang, Bingyu Xia, Jian Gou, Peng Cheng, Yong Xu, Lan Chen, Kehui Wu. Symmetry Breaking and Reversible Hydrogenation of Two-Dimensional Semiconductor Sn$_{2}$Bi *[J]. Chin. Phys. Lett., 0, (): 076802
[3] Yan Gong, Jingwen Guo, Jiaheng Li, Kejing Zhu, Menghan Liao, Xiaozhi Liu, Qinghua Zhang, Lin Gu, Lin Tang, Xiao Feng, Ding Zhang, Wei Li, Canli Song, Lili Wang, Pu Yu, Xi Chen, Yayu Wang, Hong Yao, Wenhui Duan, Yong Xu, Shou-Cheng Zhang, Xucun Ma, Qi-Kun Xue, Ke He. Experimental Realization of an Intrinsic Magnetic Topological Insulator[J]. Chin. Phys. Lett., 2019, 36(7): 076802
[4] Si-Min Huang, Bo Qian, Ruo-Xi Shen, Yong-Lin Xie. Nonlinear Doping, Chemical Passivation and Photoluminescence Mechanism in Water-Soluble Silicon Quantum Dots by Mechanochemical Synthesis[J]. Chin. Phys. Lett., 2018, 35(3): 076802
[5] Xin-Yi Yang, Guan-Yong Wang, Chen-Xiao Zhao, Zhen Zhu, Lu Dong, Ai-Min Li, Yang-Yang Lv, Shu-Hua Yao, Yan-Bin Chen, Dan-Dan Guan, Yao-Yi Li, Hao Zheng, Dong Qian, Canhua Liu, Yu-Lin Chen, Jin-Feng Jia. Surface Structure and Reconstructions of HgTe (111) Surfaces[J]. Chin. Phys. Lett., 2018, 35(2): 076802
[6] N. Panahi, M. T. Hosseinnejad, M. Shirazi, M. Ghoranneviss. Optimization of Gas Sensing Performance of Nanocrystalline SnO$_{2}$ Thin Films Synthesized by Magnetron Sputtering[J]. Chin. Phys. Lett., 2016, 33(06): 076802
[7] HE Xiao-Min, CHEN Zhi-Ming, LI Lian-Bi. Relaxation of 6H-SiC (0001) Surface and Si Adsorption on 6H-SiC (0001): an ab initio Study[J]. Chin. Phys. Lett., 2015, 32(03): 076802
[8] LIU Xiao-Juan, CAO Wen-Qiang, HUANG Zi-Han, YUAN Jie, FANG Xiao-Yong, CAO Mao-Sheng. Electronic Structures and Adsorption of Li-Doped Graphenes for CO[J]. Chin. Phys. Lett., 2015, 32(03): 076802
[9] LUO Jie-Xin, CHEN Jing, CHAI Zhan, L Kai, HE Wei-Wei, YANG Yan, WANG Xi. The Impact of Shallow-Trench-Isolation Mechanical Stress on the Hysteresis Effect of Partially Depleted Silicon-on-Insulator n-Type Metal-Oxide-Semiconductor Field Effects[J]. Chin. Phys. Lett., 2014, 31(12): 076802
[10] FENG Xiang-Xu, LIU Nai-Xin, ZHANG Ning, WEI Tong-Bo, WANG Jun-Xi, LI Jin-Min. Effect of Stress in GaN/AlInGaN Grown on GaN Templates with Different Stress States[J]. Chin. Phys. Lett., 2014, 31(05): 076802
[11] SUN Bing, CHANG Hu-Dong, LU Li, LIU Hong-Gang, WU De-Xin. High-Quality Single Crystalline Ge(111) Growth on Si(111) Substrates by Solid Phase Epitaxy[J]. Chin. Phys. Lett., 2012, 29(3): 076802
[12] MENG Xiu-Qing**, FANG Yun-Zhang, WU Feng-Min. Amphiphilic Bio-molecules/ZnO Interface: Enhancement of Bio-affinity and Dispersibility[J]. Chin. Phys. Lett., 2012, 29(1): 076802
[13] LIU Yan, AO Zhi-Min**, WANG Tao**, WANG Wen-Bo, SHENG Kuang, YU Bin, . Transformation from AA to AB-Stacked Bilayer Graphene on α−SiO2 under an Electric Field[J]. Chin. Phys. Lett., 2011, 28(8): 076802
[14] ZHONG Ze, SUN Li-Jie, CHEN Xiao-Qing, WU Xiao-Peng, FU Zhu-Xi. Effect of Zn Interstitials on Enhancing Ultraviolet Emission of ZnO Films Deposited by MOCVD[J]. Chin. Phys. Lett., 2010, 27(9): 076802
[15] FU Ying-Shuang, JI Shuai-Hua, ZHANG Tong, CHEN Xi, JIA Jin-Feng, XUE Qi-Kun, MA Xu-Cun . Modifying Quantum Well States of Pb Thin Films via Interface Engineering[J]. Chin. Phys. Lett., 2010, 27(6): 076802
Viewed
Full text


Abstract