Chin. Phys. Lett.  2018, Vol. 35 Issue (10): 107101    DOI: 10.1088/0256-307X/35/10/107101
Computational Prediction to Two-Dimensional SnAs
Dawei Zhou1, Yangbing Zheng2, Chunying Pu1**, Zhuo Wang2, Xin Tang3
1College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061
2College of Mechanical and Electronic Engineering, Nanyang Normal University, Nanyang 473061
3College of Material Science and Engineering, Guilin University of Technology, Guilin 541004
Cite this article:   
Dawei Zhou, Yangbing Zheng, Chunying Pu et al  2018 Chin. Phys. Lett. 35 107101
Download: PDF(2913KB)   PDF(mobile)(2907KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By means of the particle-swarm optimization method and density functional theory calculations, the lowest-energy structure of SnAs is determined to be a bilayer stacking system and the atoms on top of each other are of the same types. Using the hybrid functional of Heyd–Scuseria–Ernzerhof, SnAs is calculated to be a semiconductor with an indirect band gap of 1.71 eV, which decreases to 1.42 eV with the increase of the bi-axial tensile stress up to 2%, corresponding to the ideal value of 1.40 eV for potential photovoltaic applications. Based on the deformation potential theory, the two-dimensional (2D) SnAs has high electron motilities along $x$ and $y$ directions ($1.63\times10^{3}$ cm$^{2}$V$^{-1}$s$^{-1}$). Our calculated results suggest that SnAs can be viewed as a new type of 2D materials for applications in optoelectronics and nanoelectronic devices.
Received: 07 June 2018      Published: 15 September 2018
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  68.90.+g (Other topics in structure, and nonelectronic properties of surfaces and interfaces; thin films and low-dimensional structures)  
  71.15.Nc (Total energy and cohesive energy calculations)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 51501093, 41773057, U1304612 and U1404608, the Science Technology Innovation Talents in Universities of Henan Province under Grant No 16HASTIT047, and the Young Core Instructor Foundation of Henan Province under Grant No 2015GGJS-122.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Dawei Zhou
Yangbing Zheng
Chunying Pu
Zhuo Wang
Xin Tang
[1]Miro P et al 2014 Chem. Soc. Rev. 43 6537
[2]Novoselov K S 2004 Science 306 666
[3]Lalmi B et al 2010 Appl. Phys. Lett. 97 223109
[4]Friedlein R and Yamada-Takamura Y 2015 J. Phys.: Condens. Matter 27 203201
[5]Liu Z L et al 2014 New J. Phys. 16 075006
[6]Bianco E et al 2013 ACS Nano 7 4414
[7]Zhu F F et al 2015 Nat. Mater. 14 1020
[8]Ma Y D et al 2012 J. Phys. Chem. C 116 12977
[9]Liu C C et al 2011 Phys. Rev. B 84 195430
[10]Vogt P et al 2012 Phys. Rev. Lett. 108 155501
[11]Chen L et al 2012 Phys. Rev. Lett. 109 056804
[12]Fleurence A et al 2012 Phys. Rev. Lett. 108 245501
[13]Li L K et al 2014 Nat. Nanotechnol. 9 372
[14]Reich E S 2014 Nature 506 19
[15]Lu W L et al 2014 Nano Res. 7 853
[16]Liu H et al 2014 ACS Nano 8 4033
[17]Zhang Y Z et al 2013 Nat. Commun. 4 1811
[18]Joshua O I et al 2015 2D Mater. 2 011002
[19]Li L et al 2018 Adv. Mater. 30 1706771
[20]Barreteau C et al 2016 J. Cryst. Growth 443 75
[21]Zhang S et al 2016 2D Mater. 4 015030
[22]Wang Y C et al 2012 Comput. Phys. Commun. 183 2063
[23]Wang Y C et al 2010 Phys. Rev. B 82 094116
[24]Blöchl P E 1994 Phys. Rev. B 50 17953
[25]Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[26]Kresse G and Jürgen H 1993 Phys. Rev. B 47 558
[27]Perdew J P et al 1996 Phys. Rev. Lett. 77 3865
[28]Heyd J et al 2003 J. Chem. Phys. 118 8
[29]Togo A et al 2008 Phys. Rev. B 78 134106
[30]Segall M D et al 2002 J. Phys.: Condens. Matter 14 2717
[31]Zubov V I et al 1994 Phys. Lett. A 194 223
[32]Zhang S et al 2015 Angew. Chem. Int. Ed. 54 3112
[33]Yang L M et al 2015 J. Am. Chem. Soc. 137 2757
[34]Bardeen J and Shockley W 1950 Phys. Rev. 80 72
[35]Xi J et al 2012 Nanoscale 4 4348
[36]Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510
Related articles from Frontiers Journals
[1] Xu-Han Shi, Bo Liu, Zhen Yao, Bing-Bing Liu. Pressure-Stabilized New Phase of CaN$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 107101
[2] Dandan Guan, Xinwei Wang, Hongying Mao, Shining Bao, Jin-Feng Jia. Adsorption of Perylene on Si(111)($7 \times 7$)[J]. Chin. Phys. Lett., 2020, 37(2): 107101
[3] Weiyi Gong, Ching-Him Leung, Chuen-Keung Sin, Jingzhao Zhang, Xiaodong Zhang, Bin Xi, Junyi Zhu. Stable Intrinsic Long Range Antiferromagnetic Coupling in Dilutely V Doped Chalcopyrite[J]. Chin. Phys. Lett., 2020, 37(2): 107101
[4] Kai Zhou, Ting Zhang, Bin Liu, Yi-Jun Yao. Electronic Structures and Thermoelectric Properties of ZnSb Doped with Cd and In from First Principles Calculations[J]. Chin. Phys. Lett., 2020, 37(1): 107101
[5] Haijiang Liu, Yuanji Xu, Yigui Zhong, Jianyu Guan, Lingyuan Kong, Junzhang Ma, Yaobo Huang, Qiuyun Chen, Genfu Chen, Ming Shi, Yi-feng Yang, Hong Ding. Hybridization Effects Revealed by Angle-Resolved Photoemission Spectroscopy in Heavy-Fermion Ce$_{2}$IrIn$_{8}$[J]. Chin. Phys. Lett., 2019, 36(9): 107101
[6] Juan Ren, Song-Bin Zhang, Ping-Ping Liu. Magnetic and Electronic Properties of $\beta$-Graphyne Doped with Rare-Earth Atoms[J]. Chin. Phys. Lett., 2019, 36(7): 107101
[7] Lin Feng, Xue-Ying Zhang. First-Principles Investigation on the Fully Compensated Ferrimagnetic Behavior in Ti$_{2}$NbSb and TiZrNbSb[J]. Chin. Phys. Lett., 2019, 36(6): 107101
[8] Lei Guo, Gang Tang, Jiawang Hong. Mechanical Properties of Formamidinium Halide Perovskites FABX$_{3}$ (FA=CH(NH$_{2})_{2}$; B=Pb, Sn; X=Br, I) by First-Principles Calculations[J]. Chin. Phys. Lett., 2019, 36(5): 107101
[9] Meng Ye, Cai-Juan Xia, Bo-Qun Zhang, Yue Ma. Negative Differential Resistance and Rectifying Effects of Diblock Co-Oligomer Molecule Devices Sandwiched between C$_{2}$N-$h$2D Electrodes[J]. Chin. Phys. Lett., 2019, 36(4): 107101
[10] Baoan Liu, Suye Yu, Xiangcao Li, Xin Ju. Electronic Structure and Optical Property Calculation of an Oxygen Vacancy in NH$_{4}$H$_{2}$PO$_{4}$ Crystals[J]. Chin. Phys. Lett., 2019, 36(3): 107101
[11] Yu-Zhuo LV, Peng ZHAO. Spin Caloritronic Transport of Tree-Saw Graphene Nanoribbons[J]. Chin. Phys. Lett., 2019, 36(1): 107101
[12] Li Guan, Guang-Ming Shen, Hao-Tian Ma, Guo-Qi Jia, Feng-Xue Tan, Ya-Nan Liang, Zhi-Ren Wei. Different Thermal Stabilities of Cation Point Defects in LaAlO$_{3}$ Bulk and Films[J]. Chin. Phys. Lett., 2018, 35(9): 107101
[13] Yang Liu, Cai-Juan Xia, Bo-Qun Zhang, Ting-Ting Zhang, Yan Cui, Zhen-Yang Hu. Effect of Chemical Doping on the Electronic Transport Properties of Tailoring Graphene Nanoribbons[J]. Chin. Phys. Lett., 2018, 35(6): 107101
[14] Hui-Xiong Deng, Zhi-Gang Song, Shu-Shen Li, Su-Huai Wei, Jun-Wei Luo. Atomic-Ordering-Induced Quantum Phase Transition between Topological Crystalline Insulator and $Z_{2}$ Topological Insulator[J]. Chin. Phys. Lett., 2018, 35(5): 107101
[15] Ya-Wei Zhang, Kai-Ke Yang, Hui-Xiong Deng. Structural Phase Transition and a Mutation of Electron Mobility in Zn$_{x}$Cd$_{1-x}$O Alloys[J]. Chin. Phys. Lett., 2018, 35(5): 107101
Full text