Chin. Phys. Lett.  2018, Vol. 35 Issue (10): 107101    DOI: 10.1088/0256-307X/35/10/107101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Computational Prediction to Two-Dimensional SnAs
Dawei Zhou1, Yangbing Zheng2, Chunying Pu1**, Zhuo Wang2, Xin Tang3
1College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061
2College of Mechanical and Electronic Engineering, Nanyang Normal University, Nanyang 473061
3College of Material Science and Engineering, Guilin University of Technology, Guilin 541004
Cite this article:   
Dawei Zhou, Yangbing Zheng, Chunying Pu et al  2018 Chin. Phys. Lett. 35 107101
Download: PDF(2913KB)   PDF(mobile)(2907KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By means of the particle-swarm optimization method and density functional theory calculations, the lowest-energy structure of SnAs is determined to be a bilayer stacking system and the atoms on top of each other are of the same types. Using the hybrid functional of Heyd–Scuseria–Ernzerhof, SnAs is calculated to be a semiconductor with an indirect band gap of 1.71 eV, which decreases to 1.42 eV with the increase of the bi-axial tensile stress up to 2%, corresponding to the ideal value of 1.40 eV for potential photovoltaic applications. Based on the deformation potential theory, the two-dimensional (2D) SnAs has high electron motilities along $x$ and $y$ directions ($1.63\times10^{3}$ cm$^{2}$V$^{-1}$s$^{-1}$). Our calculated results suggest that SnAs can be viewed as a new type of 2D materials for applications in optoelectronics and nanoelectronic devices.
Received: 07 June 2018      Published: 15 September 2018
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  68.90.+g (Other topics in structure, and nonelectronic properties of surfaces and interfaces; thin films and low-dimensional structures)  
  71.15.Nc (Total energy and cohesive energy calculations)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 51501093, 41773057, U1304612 and U1404608, the Science Technology Innovation Talents in Universities of Henan Province under Grant No 16HASTIT047, and the Young Core Instructor Foundation of Henan Province under Grant No 2015GGJS-122.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/10/107101       OR      https://cpl.iphy.ac.cn/Y2018/V35/I10/107101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Dawei Zhou
Yangbing Zheng
Chunying Pu
Zhuo Wang
Xin Tang
[1]Miro P et al 2014 Chem. Soc. Rev. 43 6537
[2]Novoselov K S 2004 Science 306 666
[3]Lalmi B et al 2010 Appl. Phys. Lett. 97 223109
[4]Friedlein R and Yamada-Takamura Y 2015 J. Phys.: Condens. Matter 27 203201
[5]Liu Z L et al 2014 New J. Phys. 16 075006
[6]Bianco E et al 2013 ACS Nano 7 4414
[7]Zhu F F et al 2015 Nat. Mater. 14 1020
[8]Ma Y D et al 2012 J. Phys. Chem. C 116 12977
[9]Liu C C et al 2011 Phys. Rev. B 84 195430
[10]Vogt P et al 2012 Phys. Rev. Lett. 108 155501
[11]Chen L et al 2012 Phys. Rev. Lett. 109 056804
[12]Fleurence A et al 2012 Phys. Rev. Lett. 108 245501
[13]Li L K et al 2014 Nat. Nanotechnol. 9 372
[14]Reich E S 2014 Nature 506 19
[15]Lu W L et al 2014 Nano Res. 7 853
[16]Liu H et al 2014 ACS Nano 8 4033
[17]Zhang Y Z et al 2013 Nat. Commun. 4 1811
[18]Joshua O I et al 2015 2D Mater. 2 011002
[19]Li L et al 2018 Adv. Mater. 30 1706771
[20]Barreteau C et al 2016 J. Cryst. Growth 443 75
[21]Zhang S et al 2016 2D Mater. 4 015030
[22]Wang Y C et al 2012 Comput. Phys. Commun. 183 2063
[23]Wang Y C et al 2010 Phys. Rev. B 82 094116
[24]Blöchl P E 1994 Phys. Rev. B 50 17953
[25]Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[26]Kresse G and Jürgen H 1993 Phys. Rev. B 47 558
[27]Perdew J P et al 1996 Phys. Rev. Lett. 77 3865
[28]Heyd J et al 2003 J. Chem. Phys. 118 8
[29]Togo A et al 2008 Phys. Rev. B 78 134106
[30]Segall M D et al 2002 J. Phys.: Condens. Matter 14 2717
[31]Zubov V I et al 1994 Phys. Lett. A 194 223
[32]Zhang S et al 2015 Angew. Chem. Int. Ed. 54 3112
[33]Yang L M et al 2015 J. Am. Chem. Soc. 137 2757
[34]Bardeen J and Shockley W 1950 Phys. Rev. 80 72
[35]Xi J et al 2012 Nanoscale 4 4348
[36]Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510
Related articles from Frontiers Journals
[1] Weiqing Zhou and Shengjun Yuan. A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations[J]. Chin. Phys. Lett., 2023, 40(2): 107101
[2] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 107101
[3] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 107101
[4] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 107101
[5] Xiaolan Yan, Pei Li, Su-Huai Wei, and Bing Huang. Universal Theory and Basic Rules of Strain-Dependent Doping Behaviors in Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 107101
[6] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 107101
[7] Xian-Li Zhang, Jinbo Pan, Xin Jin, Yan-Fang Zhang, Jia-Tao Sun, Yu-Yang Zhang, and Shixuan Du. Database Construction for Two-Dimensional Material-Substrate Interfaces[J]. Chin. Phys. Lett., 2021, 38(6): 107101
[8] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 107101
[9] Hong-Bin Ren, Lei Wang, and Xi Dai. Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System[J]. Chin. Phys. Lett., 2021, 38(5): 107101
[10] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 107101
[11] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 107101
[12] Xihui Wang, Xiaole Qiu, Chang Sun, Xinyu Cao, Yujie Yuan, Kai Liu, and Xiao Zhang. Layered Transition Metal Electride Hf$_{2}$Se with Coexisting Two-Dimensional Anionic $d$-Electrons and Hf–Hf Metallic Bonds[J]. Chin. Phys. Lett., 2021, 38(1): 107101
[13] Aolin Li, Wenzhe Zhou, Jiangling Pan, Qinglin Xia, Mengqiu Long, and Fangping Ouyang. Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(10): 107101
[14] Kaiyao Zhou, Jun Deng, Liwei Guo, and Jiangang Guo. Tunable Superconductivity in 2H-NbSe$_{2}$ via $\boldsymbol In~Situ$ Li Intercalation[J]. Chin. Phys. Lett., 2020, 37(9): 107101
[15] Xu-Han Shi, Bo Liu, Zhen Yao, Bing-Bing Liu. Pressure-Stabilized New Phase of CaN$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 107101
Viewed
Full text


Abstract